参考资料,少熬夜!初二数学上册教案最新4篇【导读指引】三一刀客最漂亮的网友为您整理分享的“初二数学上册教案最新4篇”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!八年级数学上册学习步骤【第一篇】训练板块训练目标三角形通过角的相关计算和证明,培养学生“看到什么想什么”的思考方式,熟练调用与角有关的定理,打通已知和所求,形成完整的思维链条;让学生初步体验辅助线的作用,依据定理,通过“搭桥、补全”转为基本图形解决.训练学生掌握几何作图基本操作和规范的几何语言;按照先拆解再合练、先填空再独立书写的方式,分解动作训练学生的书写表达,为全等三角形的训练做好铺垫.全等三角形在掌握全等三角形的性质及判定的基础上,以典型特征(中点,线段的和差倍分等)下辅助线的作法倍长中线、截长补短等为例,进一步训练学生对全等结构的认识,并能够根据特征构造全等三角形来解决问题;通过类比探究、动点问题等综合性题目,培养学生在固定框架下有序思考,有序操作的能力.轴对称在掌握等腰三角形性质及判定的基础上,进一步训练学生对特殊等腰三角形(等边三角形、等腰直角三角形)的认识以及在特殊结构(三线中已知两线)中构造等腰三角形解决问题的能力,培养学生有理有据的推理能力和结构化意识.整式的乘法与因式分解在学习了整式的运算法则的基础上,进一步从整体代入、几何表示以及公式的逆用等方面来学习整式.重在让学生掌握整体代入的思想方法,灵活运用知二求二进行计算,通过公式几何表示的讲解,建立起代数和几何之间的联系.训练学生观察、归纳、转化的代数推理能力.因式分解模块在“一提、二套、三分、四查”的基本思路下,训练换元、拆项添项、待定系数等恒等变形技巧,构造或转化为熟悉模型结构,把复杂问题转为四种基本方法解决,训练学生转化化归的能力,提升学生的代数运算技能、分析推理能力.分式调用分式的基本性质、运算法则和应用,通过特征的观察与分析,辅以恰当的代数变形技巧(逐项通分、裂项相消、换元、取倒数、设参数等)来解决问题,训练学生转化化归、整体代入的数学思想.数学八年级上教案【第二篇】教学目标1、理解并掌握等腰三角形的判定定理及推论2、能利用其性质与判定证明线段或角的相等关系。教学重点:等腰三角形的判定定理及推论的运用教学难点:正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系。参考资料,少熬夜!教学过程:一、复习等腰三角形的性质二、新授:I提出问题,创设情境出示投影片。某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC的长度就可知河流宽度。学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”。II引入新课1.由性质定理的题设和结论的变化,引出研究的内容——在△ABC中,苦∠B=∠C,则AB=AC吗?作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?2.引导学生根据图形,写出已知、求证。2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称).强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”。4.引导学生说出引例中地质专家的测量方法的根据。III例题与练习1.如图2其中△ABC是等腰三角形的是[]2.①如图3,已知△ABC中,AB=AC.∠A=36°,则∠C______(根据什么?).②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?).③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______.④若已知AD=4cm,则BC______cm.3.以问题形式引出推论l______.4.以问题形式引出推论2______.例:如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形。分析:引导学生根据题意作出图形,写出已知、求证,并分析证明。练习:5.(l)如图6,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE//BC,交AB于点D,交AC于E.问图中哪些三角形是等腰三角形?(2)上题中,若去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗?练习:P53练习1、2、3。参考资料,少熬夜!IV课堂小结1.判定一个三角形是等腰三角形有几种方法?2.判定一个三角形是等边三角形有几种方法?3.等腰三角形的性质定理与判定定理有何关系?4.现在证明线段相等问题,一般应从几方面考虑?V布置作业:P56页习题第5、6题八年级数学上册教案【第三篇】一、学习目标:1.使学生了解运用公式法分解因式的意义;2.使学生掌握用平方差公式分解因式二、重点难点重点:掌握运用平方差公式分解因式。难点:将单项式化为平方形式,再用平方差公式分解因式;学习方法:归纳、概括、总结三、合作学习创设问题情境,引入新课在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式。如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法。1.请看乘法公式(a+b)(a-b)=a2-b2(1)左边是整式乘法,右边是一个多项式,把这个等式反过来就是a2-b2=(a+b)(a-b)(2)左边是一个多项式,右边是整式的乘积。大家判断一下,第二个式子从左边到右边是否是因式分解?利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式。a2-b2=(a+b)(a-b)2.公式讲解如x2-16=(x)2-42=(x+4)(x-4).9m2-4n2=(3m)2-(2n)2=(3m+2n)(3m-2n)四、精讲精练例1、把下列各式分解因式:参考资料,少熬夜!(1)25-16x2;(2)9a2-b2.例2、把下列各式分解因式:(1)9(m+n)2-(m-n)2;(2)2x3-8x.补充例题:判断下列分解因式是否正确。(1)(a+b)2-c2=a2+2ab+b2-c2.(2)a4-1=(a2)2-1=(a2+1)•(a2-1).五、课堂练习教科书练习六、作业1、教科书习题2、分解因式:x4-16x3-4x4x2-(y-z)23、若x2-y2=30,x-y=-5求x+y初二数学上册教案【第四篇】1、教材分析(1)知识结构:(2)重点和难点分析:重点:四边形的有关概念及内角和定理。因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用。难点:四边形的概念及四边形不稳定性的理解和应用。在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上在同一平面内这个条件,这几个字的意思学生不好理解,所以是难点。2、教法建议(1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。(2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。(3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决。结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。(4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题。一、素质教育目标参考资料,少熬夜!(一)知识教学点1、使学生掌握四边形的有关概念及四边形的内角和外角和定理。2、了解四边形的不稳定性及它在实际生产,生活中的应用。(二)能力训练点1、通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力。2、通过推导四边形内角和定理,对学生渗透化归思想。3、会根据比较简单的条件画出指定的四边形。4、讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想。(三)德育渗透点使学生认识到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣。(四)美育渗透点通过四边形内角和定理数学,渗透统一美,应用美。二、学法引导类比、观察、引导、讲解三、重点难点疑点及解决办法1、教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题。2、教学难点:理解四边形的。有关概念中的一些细节问题;四边形不稳定性的理解和应用。3、疑点及解决办法:四边形的定义中为什么要有在平面内,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角。四、课时安排2课时五、教具学具准备投影仪、胶片、四边形模型、常用画图工具六、师生互动活动设计教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料。第一课时七、教学步骤复习引入在小学里已经对四边形、长方形、平形四边形的有关知识有所了解,但还很肤浅,这一章我们将比较系统地学习各种四边形的性质和判定分析它们之间的关系,并运用有关四边形的知识解决一些新问题。引入新课用投影仪打出课前画好的教材中P119的图。参考资料,少熬夜!师问:在上图中你能把知道的长方形、正方形、平行四边形、梯形找出来吗?(启发学生找上述图形,最后教师用彩色笔勾出几个图形)。讲解新课1、四边形的有关概念结合图形讲解四边形,四边形的边、顶点、角,凸四边形,四边形的对角线(同时学生在书上画出上述概念),讲解这些概念时:(1)要结合图形。(2)要与三角形类比。(3)讲清定义中的关键词语。如四边形定义中要说明为什么加上同一平面内而三角形的定义中为什么不加同一平面内(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图42中的点。我们现在只研究平面图形,故在定义中加上在同一平面内的限制)。(4)强调四边形对角线的作用,作为四边形的一种常用的辅助线,通过它可以把四边形问题转化为三角形来解(渗透化归思想),并观察图4—3用对角线分成的这些三角形与原四边形的关系。(5)强调四边形的表示方法,一定要按顶点顺序书写四边形如图41。(6)在判断一个四边形是不是凸四边形时,一定要按照定义的要求把每一边都延长后再下结论如图4—4,图4—5。2、四边形内角和定理教师问:(1)在图4—3中对角线AC把四边形ABCD分成几个三角形?(2)在图4—6中两条对角线AC和BD把四边形分成几个三角形?(3)若在四边形ABCD如图4—7内任取一点O,从O向四个顶点作连线,把四边形分成几个三角形。我们知道,三角形内角和等于180,那么四边形的内角和就等于:①2180=360如图4②4180—360=360如图4—7。例1已知:如图48,直线于B、于C。求证:(1)(2)。本例题是四边形内角和定理的应用,实际上它证明了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,如果需要应用,作两三步推理就可以证出。总结、扩展1、四边形的有关概念。