直线与圆的方程典型例题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页共21页高中数学圆的方程典型例题类型一:圆的方程例1求过两点)4,1(A、)2,3(B且圆心在直线0y上的圆的标准方程并判断点)4,2(P与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P与圆的位置关系,只须看点P与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(rbyax.∵圆心在0y上,故0b.∴圆的方程为222)(ryax.又∵该圆过)4,1(A、)2,3(B两点.∴22224)3(16)1(rara解之得:1a,202r.所以所求圆的方程为20)1(22yx.解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A、)2,3(B两点,所以圆心C必在线段AB的垂直平分线l上,又因为13124ABk,故l的斜率为1,又AB的中点为)3,2(,故AB的垂直平分线l的方程为:23xy即01yx.又知圆心在直线0y上,故圆心坐标为)0,1(C∴半径204)11(22ACr.故所求圆的方程为20)1(22yx.又点)4,2(P到圆心)0,1(C的距离为rPCd254)12(22.∴点P在圆外.例2求半径为4,与圆042422yxyx相切,且和直线0y相切的圆的方程.第2页共21页分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆222)()(rbyaxC:.圆C与直线0y相切,且半径为4,则圆心C的坐标为)4,(1aC或)4,(2aC.又已知圆042422yxyx的圆心A的坐标为)1,2(,半径为3.若两圆相切,则734CA或134CA.(1)当)4,(1aC时,2227)14()2(a,或2221)14()2(a(无解),故可得1022a.∴所求圆方程为2224)4()1022(yx,或2224)4()1022(yx.(2)当)4,(2aC时,2227)14()2(a,或2221)14()2(a(无解),故622a.∴所求圆的方程为2224)4()622(yx,或2224)4()622(yx.说明:对本题,易发生以下误解:由题意,所求圆与直线0y相切且半径为4,则圆心坐标为)4,(aC,且方程形如2224)4()(yax.又圆042422yxyx,即2223)1()2(yx,其圆心为)1,2(A,半径为3.若两圆相切,则34CA.故2227)14()2(a,解之得1022a.所以欲求圆的方程为2224)4()1022(yx,或2224)4()1022(yx.上述误解只考虑了圆心在直线0y上方的情形,而疏漏了圆心在直线0y下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的.例3求经过点)5,0(A,且与直线02yx和02yx都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02yx与02yx相切,∴圆心C在这两条直线的交角平分线上,又圆心到两直线02yx和02yx的距离相等.∴5252yxyx.∴两直线交角的平分线方程是03yx或03yx.第3页共21页又∵圆过点)5,0(A,∴圆心C只能在直线03yx上.设圆心)3,(ttC∵C到直线02yx的距离等于AC,∴22)53(532tttt.化简整理得0562tt.解得:1t或5t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55.∴所求圆的方程为5)3()1(22yx或125)15()5(22yx.说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.例4、设圆满足:(1)截y轴所得弦长为2;(2)被x轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02yxl:的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(baP,半径为r.则P到x轴、y轴的距离分别为b和a.由题设知:圆截x轴所得劣弧所对的圆心角为90,故圆截x轴所得弦长为r2.∴222br又圆截y轴所得弦长为2.∴122ar.又∵),(baP到直线02yx的距离为52bad第4页共21页∴2225badabba4422)(242222baba1222ab当且仅当ba时取“=”号,此时55mind.这时有1222abba∴11ba或11ba又2222br故所求圆的方程为2)1()1(22yx或2)1()1(22yx解法二:同解法一,得52bad.∴dba52.∴2225544dbdba.将1222ba代入上式得:01554222dbdb.上述方程有实根,故0)15(82d,∴55d.将55d代入方程得1b.又1222ab∴1a.由12ba知a、b同号.第5页共21页故所求圆的方程为2)1()1(22yx或2)1()1(22yx.说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?类型二:切线方程、切点弦方程、公共弦方程例5已知圆422yxO:,求过点42,P与圆O相切的切线.解:∵点42,P不在圆O上,∴切线PT的直线方程可设为42xky根据rd∴21422kk解得43k所以4243xy即01043yx因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2x.说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200ryyxx,求出切点坐标0x、0y的值来解决,此时没有漏解.例6两圆0111221FyExDyxC:与0222222FyExDyxC:相交于A、B两点,求它们的公共弦AB所在直线的方程.分析:首先求A、B两点的坐标,再用两点式求直线AB的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C、2C的任一交点坐标为),(00yx,则有:0101012020FyExDyx①0202022020FyExDyx②①-②得:0)()(21021021FFyEExDD.∵A、B的坐标满足方程0)()(212121FFyEExDD.∴方程0)()(212121FFyEExDD是过A、B两点的直线方程.又过A、B两点的直线是唯一的.∴两圆1C、2C的公共弦AB所在直线的方程为0)()(212121FFyEExDD.第6页共21页说明:上述解法中,巧妙地避开了求A、B两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例7、过圆122yx外一点)3,2(M,作这个圆的两条切线MA、MB,切点分别是A、B,求直线AB的方程。练习:1.求过点(3,1)M,且与圆22(1)4xy相切的直线l的方程.解:设切线方程为1(3)ykx,即310kxyk,∵圆心(1,0)到切线l的距离等于半径2,∴22|31|21kkk,解得34k,∴切线方程为31(3)4yx,即34130xy,当过点M的直线的斜率不存在时,其方程为3x,圆心(1,0)到此直线的距离等于半径2,故直线3x也适合题意。所以,所求的直线l的方程是34130xy或3x.2、过坐标原点且与圆0252422yxyx相切的直线的方程为解:设直线方程为kxy,即0ykx.∵圆方程可化为25)1()2(22yx,∴圆心为(2,-1),半径为210.依题意有2101122kk,解得3k或31k,∴直线方程为xy3或xy31.3、已知直线0125ayx与圆0222yxx相切,则a的值为.解:∵圆1)1(22yx的圆心为(1,0),半径为1,∴1125522a,解得8a或18a.类型三:弦长、弧问题例8、求直线063:yxl被圆042:22yxyxC截得的弦AB的长.第7页共21页例9、直线0323yx截圆422yx得的劣弧所对的圆心角为解:依题意得,弦心距3d,故弦长2222drAB,从而△OAB是等边三角形,故截得的劣弧所对的圆心角为3AOB.例10、求两圆0222yxyx和522yx的公共弦长类型四:直线与圆的位置关系例11、已知直线0323yx和圆422yx,判断此直线与已知圆的位置关系.例12、若直线mxy与曲线24xy有且只有一个公共点,求实数m的取值范围.解:∵曲线24xy表示半圆)0(422yyx,∴利用数形结合法,可得实数m的取值范围是22m或22m.例13圆9)3()3(22yx上到直线01143yx的距离为1的点有几个?分析:借助图形直观求解.或先求出直线1l、2l的方程,从代数计算中寻找解答.解法一:圆9)3()3(22yx的圆心为)3,3(1O,半径3r.设圆心1O到直线01143yx的距离为d,则324311343322d.如图,在圆心1O同侧,与直线01143yx平行且距离为1的直线1l与圆有两个交点,这两个交点符合题意.又123dr.∴与直线01143yx平行的圆的切线的两个切点中有一个切点也符合题意.∴符合题意的点共有3个.解法二:符合题意的点是平行于直线01143yx,且与之距离为1的直线和圆的交点.设第8页共21页所求直线为043myx,则1431122md,∴511m,即6m,或16m,也即06431yxl:,或016432yxl:.设圆9)3()3(221yxO:的圆心到直线1l、2l的距离为1d、2d,则34363433221d,143163433222d.∴1l与1O相切,与圆1O有一个公共点;2l与圆1O相交,与圆1O有两个公共点.即符合题意的点共3个.说明:对于本题,若不留心,则易发生以下误解:设圆心1O到直线01143yx的距离为d,则324311343322d.∴圆1O到01143yx距离为1的点有两个.显然,上述误解中的d是圆心到直线01143yx的距离,rd,只能说明此直线与圆有两个交点,而不能说明圆上有两点到此直线的距离为1.到一条直线的距离等于定值的点,在与此直线距离为这个定值的两条平行直线上,因此题中所求的点就是这两条平行直线与圆的公共点.求直线与圆的公共点个数,一般根

1 / 21
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功