等比数列的概念课件公开课

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

郑蒲港二中高一数学组名称等差数列概念常数性质通项通项变形中项公式性质公式1(1)naand=+-*()(,)nkaankdnkN=+-?旧知回顾从第2项起,每一项与它前一项的差等同一个常数公差(d)d可正可负,且可以为零112(2)nnnaaan-+=+?(,,,)nmpqnmpqnmpqNaaaa*+=+??=+(2)一位数学家说过:你如果能将一张纸对折38次,我就能顺着它在今天晚上爬上月球。以上两个实例所包含的数学问题:创设情景,引入新课(1)“一尺之棰,日取其半,万世不竭.”1,,,,,…214181161(1)1,2,4,8,16,32,…(2)一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比(q)。一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差(d)。等比数列等差数列等比数列概念课堂互动(1)1,3,9,27,81,…(3)5,5,5,5,5,5,…(4)1,-1,1,-1,1,…是,公比q=3是,公比q=x是,公比q=-1(7)2341,,,,,(0)xxxxx(2),161,81,41,21是,公比q=21观察并判断下列数列是否是等比数列:是,公比q=1(5)1,0,1,0,1,…(6)0,0,0,0,0,…不是等比数列不是等比数列)且无关的数或式子是与0,(1qnqaann(1)1,3,9,27,…(3)5,5,5,5,…(4)1,-1,1,-1,…(2),161,81,41,21(5)1,0,1,0,…(6)0,0,0,0,…1.各项不能为零,即0na2.公比不能为零,即0q4.数列a,a,a,…0a时,既是等差数列又是等比数列;0a时,只是等差数列而不是等比数列.3.当q0,各项与首项同号当q0,各项符号正负相间对概念的更深理解等差数列通项公式的推导:(n-1)个式子daa12daa23daa34daann21daann1……dnaan)1(1方法一:(累加法)daa12dnaan)1(1dda)(1daa23da21dda)2(1daa34da31……方法二:(归纳法)1nnaadqaann1等比数列通项公式的推导:2n(n-1)个式子11nnqaa……方法一:累积法qaa12qaa23qaa34qaann1qaa12qqa)(1qaa2321qaqqa)(21qaa3431qa……方法二:归纳法11nnqaa等比数列的通项公式11nnqaa当q=1时,这是一个常函数。0na等比数列,首项为,公比为q,则通项公式为na1a在等差数列中na()nmaanmd*(,)nmN试问:在等比数列中,如果知道和公比q,能否求?如果能,请写出表达式。namananmnmaaq*(,)nmN变形结论:等比中项的定义如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G就叫做a与b的等比中项在这个定义下,由等比数列的定义可得2GbaGGabGab即例1一个等比数列的第3项与第4项分别是12与18,求它的第1项与第2项.解:设这个等比数列的第1项是,公比是q,那么82331612qaa3161a23q解得,,因此316答:这个数列的第1项与第2项分别是与8.1a1831qa1221qa典型例题课堂互动(2)一个等比数列中,,求它的第3项;514215,6-=-=aaaa(1)某种放射性物质不断变化为其他物质,每经过一年剩留的这种物质是原来的,这种物质的半衰期为多长?(放射性物质衰变到原来的一半所需时间称为这种物质的半衰期)84%等比数列的例题.)()(2112111211111qqqqbaqqbababannnnnn它是一个与n无关的常数,所以nnba是一个以为公比的等比数列21qqnnnnqbqaqbqa2111121111与例2已知nnba,是项数相同的等比数列,nnba是等比数列.求证证明:设数列na首项为1a,公比为;1qnb首项为1b,公比为2q那么数列的第n项与第n+1项分别为:nnba111121112()()nnabqqabqq与即为等比数列名称等差数列概念常数性质通项通项变形dnaan)1(1dknaakn)(),(*Nkn回顾小结11nnqaaknknqaa),(*Nkn从第2项起,每一项与它前一项的比等同一个常数公比(q)q可正可负,但不可为零从第2项起,每一项与它前一项的差等同一个常数公差(d)d可正可负,且可以为零例3、等比数列{an}中,a4·a7=-512,a3+a8=124,公比q为整数,求a10.法一:直接列方程组求a1、q。法二:在法一中消去了a1,可令t=q5法三:由a4·a7=a3·a8=-5120512124323aa412833aa或128441288383aaaa或∵公比q为整数128483aa3241285q2q∴a10=a3×q10-3=-4×(-2)7=512合作交流

1 / 17
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功