好文供参考!1/21分解质因数【参考4篇】【引读】这篇优秀的文档“分解质因数【参考4篇】”由网友上传分享,供您参考学习使用,希望此文对您有所帮助,喜欢的话就分享给下载吧!分解质因数【第一篇】(课标人教实验教科书24页的学习内容)一、教学目标理解质因数和分解质因数的意义,并会用一种方法或自己喜欢的方法分解质因数。二、教学重点、难点重点:分解质因数难点:准确分解三、预计教学时间:1节四、教学活动(一)基础训练口答什么是质数?什么是合数?1是什么?解答题下面各数是质数还是合数?把你判断的填在指定的圈里。19,21,43,67,27,37,41,51,57,69,83,87,81,好文供参考!2/2191质数合数(二)新知学习引入:今天,我们学习合数与质数之间关系揭示课题-------分解质因数典型例题合数1.看合数21(1)有多少个因数?并写出:1、3、7、21(2)回到今天讨论的问题是合数与质数之间的关系,排除1和它本身21,即121=21。(3)只剩下研究37=21的问题,表示成21=37。那么,3和7叫做21的质因数(4)质因数与因数的分别?(也就是1和合数做质因数,也就是分解质因数中不能有1和合数;什么数都可以做因数)2.研究讨论合数的分解方法。(1)“树枝”图式分解法。(2)“短除法”分解质因数。3.把27,51,57,87,81分解质因数小结(分解质因数时,你认为应注意什么?)(三)巩固练习(10题)基础练习好文供参考!3/211.判断下面的横式哪些是分解质因数?哪些不是?理由?24=2266=12360=22352.把分解不正确的改正过来。提高练习把16,12,45,56分解质因数。拓展练习把下面各数分解质因数,并分别写出它们所有的因数。分解质因数因数1515=1818=2020=(五)教学效果评价(小测题2—3题)把8,72分解质因数分解质因数【第二篇】教学内容:教科书第60页例3,练习十三的第5~9题。教学目的1.使学生理解质因数和的含义,初步掌握的方法。2.培养学生的观察能力、分析能力。教具准备:视频展示台。教学过程一、复习准备1.能被2、3、5整除的数的特征是什么?好文供参考!4/212.什么叫质数,什么叫合数?随学生回答,用视频展示台展示:质数只有1和它本身两个约数。合数除了1和它本身还有别的约数。3.说出20以内的质数和合数。4.下面哪些数是质数,哪些数是合数?它们各能被哪些数整除?36212853607597二、导入新课教师:这节课我们就在掌握上面这些知识的基础上,学习。板书课题:三、进行新课1.教学例3.教师:先和同学们玩一个游戏,玩游戏之前要交代几条游戏规则(用视频展示台出示).(1)写成两个数相乘或连乘的形式,连乘的因数越多得分越高;(2)只能用自然数;(3)不能用1.教师:这几条规则明白没有?(明白了)好!现在以小组好文供参考!5/21为单位进行比赛,由老师写一个数,你们把能写成几个数连乘的数写成几个数连乘,不能按游戏规则写成乘法算式的数就不要写了。例如:4=2×212=2×2×317=22=2×11教师:每正确写一个乘号得一分,如把12写成2×2×3得2分,而写成4×3得1分;写错一个乘号扣一分,如把17写成1×17,因为我们规定不能用1,所以要倒扣一分。最后哪组的分加起来最多这个小组获得胜利。这样的游戏规则弄懂没有?学生不清楚的地方可以提问,直到每个学生都弄懂了游戏规则再开始游戏。游戏开始,教师在视频展示台上出示下面的数。3=6=21=48=53=50=75=97=学生小组讨论把这些数按游戏规则写成乘法算式。写完后,在视频展示台上展示学生写的作业,按游戏规则加分后,评出得分最高的三个组,分别发给大红旗、小红旗和小红花。然后教师请学生观察自己的作业,问学生:哪些数能写成几个数相乘的形式,哪些数不能?随学生的回答,教师在视频展示台上展示:3、53、97不能写成几个数相乘的形式;好文供参考!6/216、21、48、50、75能写成几个数相乘的形式。教师:再观察,上一排数都是什么数?(质数)为什么质数不能按游戏规则写成几个数相乘的形式?引导学生讨论后说出:质数只有约数1和它本身,因而只能写成“1×这个数本身”,因为游戏规则不能用1,所以按游戏规则不能写成几个数相乘的形式。教师:下一排又是些什么(三一刀客☆)数呢?(合数)为什么合数能按游戏规则写成几个数相乘的形式呢?引导学生说出:合数除了1和它本身以外,还有其它约数,如6除了1和6以外,还有约数2和3,所以可以写成6=2×3.教师:对了。按照游戏规则,只有合数才能写成几个数相乘的形式,所以我们就重点研究如何把一个合数分解成几个数连乘的形式。看看下面这些数都分解成了两个数相乘的形式,但是它们有什么不同?(师板书)628/\6=2×3/\28=4×72×34×7学生讨论后回答:6分解成2×3后按游戏规则就不能再分解了;但是28分解成4×7后,4×7中的4还可以分解成2×2.好文供参考!7/21教师:你是怎样发现4还能分解的呢?引导学生说出:因为4不是质数,所以很容易发现4还能分解。教师:那么我们在分解一个数时,要把这个数分解到什么时候为止呢?生:分解到都是质数就不再分解了。教师:请同学们帮助老师把28分解成质数连乘的形式。引导学生把28分解为:2828=2×2×7/\4×7/\2×2教师:这样把一个数分解成质数相乘的形式,同学们会分解吗?(会)请同学们把60、84分解成质数相乘的形式。指导学生进行数的分解,分解完后将学生的作业在视频展示台上展示,请学生评一评,这样分解对不对。重点观察是否将这些数分解成了质数相乘的形式。教师:像这样每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。(板书质因数的含义,学生默读两遍。)引导学生想一想,52=13×4,13和4都是52的因数吗?好文供参考!8/21都是52的质因数吗?52的质因数是多少?学生回答后,再请学生思考:刚才我们的游戏规则为什么“不能用1?”引导学生说出,因为1不是质数,所以也不能作为一个数的质因数。教师:从上面的例子中你能总结出什么叫吗?引导学生归纳出:把一个合数用质因数相乘的形式表示出来,叫做。教师板书的意义,引导学生读两遍;然后指导学生完成练习十三的第7题,做完后集体订正。2.教学用短除法。教师:刚才我们学习了一步一步地,这样分解起来比较麻烦,为了简便,通常我们用短除法来。教师向学生说明短除法是笔算除法竖式的简化,并以6和28为例向学生具体介绍短除法的书写方法,被除数写在哪里,除数写在哪里,商又写在哪里?然后重点问学生用什么作除数?为什么要用这个数作除数。如:教师:用哪个数去除28呢?学生:根据的意义,应该用质数去除。教师:用哪个质数呢?学生:用2和7都可以。但是最好先用2作除数,因为28的个位数是8,一眼就能看出能被2整除。教师:对!用短除法时,通常先用一个最小的能整除这个合数的质数去除。(师板书:2|2814)教师:除完了吗?(没有)为什么?(因为商14还能被好文供参考!9/212整除)那就再商2.(师板书略)这次的商7还除不除?(不除了)为什么?启发学生说出因为7是质数,达到了的目的。或者说7除了1和它本身外,没有其它约数了。这时再指导学生把各个除数和最后的商写成连乘的形式。教师:谁能把用短除法的方法归纳一下?引导学生归纳出:写出短除式──用能整除这个合数的最小质数去除──商如果是合数,照上面的方法除下去,直到商是质数止──把除数和最后的商写成连乘的形式。教师:用这个方法把24、56.学生解答后,集体订正。四、巩固练习1.学生完成练习十三的第8题,做完后集体订正。2.指导学生阅读第62页下面的“你知道吗?”并让学生说一说读后知道了什么五、课堂小结师生共同小结以下内容:1.这节课学习了什么内容?2.什么叫质因数,什么叫?怎样用短除法?3.你还知道些什么?六、课堂作业练习十三第5题和第9题。好文供参考!10/21板书设计6282|28/\/\2|62|142×34×737/\2×26=2×328=2×2×76=2×328=2×2×7每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数.把一个合数用质因数相乘的形式表示出来,叫做。写出短除式──用能整除这个合数的最小质数去除──商如果是合数,照上面的方法除下去,直到商是质数为止──把除数和最后的商写成连乘的形式。教学设计说明好文供参考!11/21本课从游戏入手,容易引起学生的好奇和注意,使学生乐于参与并主动参与学习活动,在活动中积极发挥自己的主体作用。实质上整个游戏的过程就是学生主动探究新知的过程,首先通过游戏,让学生发现有些数能按游戏规则写成几个数相乘的形式,而有些数则不能,这就为确定了研究范围;再通过怎样把一个合数分解成几个数连乘的形式的研究,让学生意识到6=2×3不能再分了,而28=4×7中的4还能再分成2×2,由此确定最终要分解成质数相乘的形式,初步形成了质因数和的概念。在此基础上教师用定义的形式直接揭示概念,肯定学生的探究成果,最后通过必要的练习强化质因数和的概念,提高学生对其概念的掌握水平。为了分散其难点,教学一开始没有向学生讲明时为什么不能用1的道理,而是通过游戏规则出示给学生,要求学生必须遵守这条规则。在学生理解了质因数和等概念后,再问学生为什么游戏规则不能用1,学生凭借掌握的概念,就能很清楚地说明其中的道理。在难点较为集中的情况下,用规则先呈现学生不能理解的知识,在学习的过程中帮助学生逐步理解,是分散学习难点的一种较好的方法。本课在教学用短除法时,首先说明用短除法要比一步一步地分解更简便适用,激起学生学习短除法的兴趣,然后重点放在对用短除法的原理的理解、书写方式和计算方法上,特别对用哪个数作除数,为什么要用较小的质数作除数等一系列问题进行了探讨,使学生能明确其算理,准确地掌握用短除法的方好文供参考!12/21法,在此基础上对方法进行归纳,再指导学生把归纳的方法用于解题实践,提高学生对知识的掌握水平。分解质因数【第三篇】课题一:质数和合数教学要求①使学生掌握质数和合数的概念,知道它们之间的联系和区别。②能正确判断一个常见数是质数还是合数。③培养学生判断、推理的能力。教学重点质数和合数的概念。教学难点正确判断一个常见数是质数还是合数。教学过程一、创设情境1.谁能说说什么是约数?2.请写出自己学号的所有约数。二、揭示课题我们学过求一个数的约数,那么每个数的约数的个数又有什么规律?下面我们一起来观察。三、探索研究1.学习质数和合数。(1)请同学报出你们学号的所有约数?(根据学生的回答板书)(2)观察:①每个约数的个数是否完全相同?②按照每好文供参考!13/21个数的约数的多少,可以分几种情况?(学生讨论后归纳)(3)可分为三种情况:(让学生填)①有一个约数的数是:。这些数中②有两个约数的数是:。③有两个以上约数的数是:。(4)再观察。①有两个约数的如:2、3、5、7、11、13、17、19等。这几个数的约数有什么特征?讲:一个数,如果只有1和它本身两个约数,我们把这样的数叫做质数(或素数)。②4、6、8、9、10、12、14、15……这些数的约数与上面的数的约数相比有什么不同?讲:一个数,如果除了1和它本身两个约数外还有别的约数,我们把这样的数叫做合数。(板书“合数”)请学号是合数的同学举手,点两名同学板演学号,大家检查。③请学号既不是合数也不是质数的同学举手并报出学号,大家检查。④学生看书第59页,读书上的小结语。2、质数、合数的判断方法。好文供参考!14/21(1)根据什么判断一个数是质数还是合数?(2)教学例2。让学生独立写出后讲所写的数为什么是质数(或合数)。四、课堂实践1.做教材第60页的“做一做”。2.做练习十三的第1题。(1)按要求去做后看剩下的数都是什么数?(2)讲:判断一个数是不是质数,除了用质数的定义进行判断外,还可以查质数表,如第59页的100以内的质数表。(或者看6的倍数的左右)3、做练习十三的2、4题。五、课堂小结学生