高一数学必修二教案(精编5篇)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

参考资料,少熬夜!高一数学必修二教案(精编5篇)【导读指引】三一刀客最漂亮的网友为您整理分享的“高一数学必修二教案(精编5篇)”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!高一数学必修二教案1教学目标:使学生初步理解集合的基本概念,了解“属于”关系的意义、常用数集的记法和集合中元素的特性。了解有限集、无限集、空集概念,教学重点:集合概念、性质;“∈”,的使用教学难点:集合概念的理解;课型:新授课教学手段:教学过程:一、引入课题军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。研究集合的数学理论在现代数学中称为集合论,它不仅是数学的一个基本分支,在数学中占据一个极其独特的地位,如果把数学比作一座宏伟大厦,那么集合论就是这座宏伟大厦的基石。集合理论是由德国数学家康托尔,他创造的集合论是近代许多数学分支的基础。(参看阅教材中读材料P17)。下面几节课中,我们共同学习有关集合的一些基础知识,为以后数学的学习打下基础。二、新课教学“物以类聚,人以群分”数学中也有类似的分类。如:自然数的集合0,1,2,3,……如:2x-13,即x2所有大于2的实数组成的集合称为这个不等式的解集。如:几何中,圆是到定点的距离等于定长的点的集合。1、一般地,指定的某些对象的全体称为集合,标记:A,B,C,D,…集合中的每个对象叫做这个集合的元素,标记:a,b,c,d,…2、元素与集合的关系a是集合A的元素,就说a属于集合A,记作a∈A,a不是集合A的元素,就说a不属于集合A,记作思考1:列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。参考资料,少熬夜!例1:判断下列一组对象是否属于一个集合呢?(1)小于10的质数(2)数学家(3)中国的直辖市(4)maths中的字母(5)book中的字母(6)所有的偶数(7)所有直角三角形(8)满足3x-2x+3的全体实数(9)方程的实数解评注:判断集合要注意有三点:范围是否确定;元素是否明确;能不能指出它的属性。3、集合的中元素的三个特性:1、元素的确定性:对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。2、元素的互异性:任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。比如:book中的字母构成的集合3、元素的无序性:集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。集合元素的三个特性使集合本身具有了确定性和整体性。4、数的集简称数集,下面是一些常用数集及其记法:非负整数集(即自然数集)记作:N有理数集Q正整数集N__或N+实数集R整数集Z注:实数的分类5、集合的分类原则:集合中所含元素的多少①有限集含有限个元素,如A={-2,3}②无限集含无限个元素,如自然数集N,有理数③空集不含任何元素,如方程x2+1=0实数解集。专用标记:Φ三、课堂练习1、用符合“∈”或填空:课本P15练习惯12、判断下面说法是否正确、正确的在()内填“√”,错误的填“×”(1)所有在N中的元素都在N__中()(2)所有在N中的元素都在Z中()(3)所有不在N__中的数都不在Z中()(4)所有不在Q中的实数都在R中()(5)由既在R中又在N__中的数组成的集合中一定包含数0()(6)不在N中的数不能使方程4x=8成立()四、回顾反思1、集合的概念2、集合元素的三个特征其中“集合中的元素必须是确定的”应理解为:对于一个给定的集合,它的元素的意义是明确的。“集合中的元素必须是互异的”应理解为:对于给定的集参考资料,少熬夜!合,它的任何两个元素都是不同的。3、常见数集的专用符号。五、作业布置1、下列各组对象能确定一个集合吗?(1)所有很大的实数(2)好心的人(3)1,2,2,3,4,5.2、设a,b是非零实数,那么可能取的值组成集合的元素是3、由实数x,-x,|x|,所组成的集合,最多含()(A)2个元素(B)3个元素(C)4个元素(D)5个元素4、下列结论不正确的是()∈NB.QQD.-1∈Z5、下列结论中,不正确的是()A.若a∈N,则-aNB.若a∈Z,则a2∈ZC.若a∈Q,则|a|∈QD.若a∈R,则6、求数集{1,x,x2-x}中的元素x应满足的条件;高一数学必修2教案2一、教学目标1.知识与技能:(1)通过实物操作,增强学生的直观感知。(2)能根据几何结构特征对空间物体进行分类。(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。(4)会表示有关于几何体以及柱、锥、台的分类。2.过程与方法:(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。(2)让学生观察、讨论、归纳、概括所学的知识。3.情感态度与价值观:(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。(2)培养学生的空间想象能力和抽象括能力。二、教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。难点:柱、锥、台、球的结构特征的概括。三、教学用具(1)学法:观察、思考、交流、讨论、概括。(2)实物模型、投影仪。四、教学过程(一)创设情景,揭示课题1、由六根火柴最多可搭成几个三角形?(空间:4个)2、在我们周围中有不少有特色的建筑物,你能举出一些参考资料,少熬夜!例子吗?这些建筑的几何结构特征如何?3、展示具有柱、锥、台、球结构特征的空间物体。问题:请根据某种标准对以上空间物体进行分类。(二)、研探新知空间几何体:多面体(面、棱、顶点):棱柱、棱锥、棱台;旋转体(轴):圆柱、圆锥、圆台、球。1、棱柱的结构特征:(1)观察棱柱的几何物体以及投影出棱柱的图片,思考:它们各自的特点是什么?共同特点是什么?(学生讨论)(2)棱柱的主要结构特征(棱柱的概念):①有两个面互相平行;②其余各面都是平行四边形;③每相邻两上四边形的公共边互相平行。(3)棱柱的表示法及分类:(4)相关概念:底面(底)、侧面、侧棱、顶点。2、棱锥、棱台的结构特征:(1)实物模型演示,投影图片;(2)以类似的方法,根据出棱锥、棱台的结构特征,并得出相关的概念、分类以及表示。棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形。棱台:且一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。3、圆柱的结构特征:(1)实物模型演示,投影图片——如何得到圆柱?(2)根据圆柱的概念、相关概念及圆柱的表示。4、圆锥、圆台、球的结构特征:(1)实物模型演示,投影图片——如何得到圆锥、圆台、球?(2)以类似的方法,根据圆锥、圆台、球的结构特征,以及相关概念和表示。5、柱体、锥体、台体的概念及关系:探究:棱柱、棱锥、棱台都是多面体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否互相转化?圆柱、圆锥、圆台呢?6、简单组合体的结构特征:(1)简单组合体的构成:由简单几何体拼接或截去或挖去一部分而成。(2)实物模型演示,投影图片——说出组成这些物体的几何结构特征。(3)列举身边物体,说出它们是由哪些基本几何体组成的。参考资料,少熬夜!(三)排难解惑,发展思维1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱?(反例说明)2、棱柱的何两个平面都可以作为棱柱的底面吗?3、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?(四)巩固深化练习:课本P7练习1、2;课本P8习题第1、2、3、4、5题(五)归纳整理:由学生整理学习了哪些内容高一数学必修二教案3考点阐述两角和与差的正弦、余弦、正切。二倍角的正弦、余弦、正切。考试要求(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式。(4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明。考题分类(一)选择题(共5题)1.(海南宁夏卷理7)=()A.B.C.2D.解:,选C。2.(山东卷理5文10)已知cos(α-)+sinα=(A)-(B)(C)-(D)解:,,3.(四川卷理3文4)()(A)(B)(C)(D)解:∵故选D;点评:此题重点考察各三角函数的`关系;4.(浙江卷理8)若则=()(A)(B)2(C)(D)解析:本小题主要考查三角函数的求值问题。由可知,两边同时除以得平方得,解得或用观察法。5.(四川延考理5)已知,则()(A)(B)(C)(D)解:,选C(二)填空题(共2题)1.(浙江卷文12)若,则_________。解析:本小题主要考查诱导公式及二倍角公式的应用。由可知,;而。答案:参考资料,少熬夜!2.(上海春卷6)化简:.(三)解答题(共1题)1.(上海春卷17)已知,求的值。[解]原式……2分.……5分又,,……9分.……12分文章高一数学必修2教案4一、教学目标1.知识与技能:掌握画三视图的基本技能,丰富学生的空间想象力。2.过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。3.情感态度与价值观:提高学生空间想象力,体会三视图的作用。二、教学重难点:重点:画出简单几何体、简单组合体的三视图;难点:识别三视图所表示的空间几何体。三、学法指导:观察、动手实践、讨论、类比。四、教学过程(一)创设情景,揭开课题展示庐山的风景图——“横看成岭侧看成峰,远近高低各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体。(二)讲授新课1、中心投影与平行投影:中心投影:光由一点向外散射形成的投影;平行投影:在一束平行光线照射下形成的投影。正投影:在平行投影中,投影线正对着投影面。2、三视图:正视图:光线从几何体的前面向后面正投影,得到的投影图;侧视图:光线从几何体的左面向右面正投影,得到的投影图;俯视图:光线从几何体的上面向下面正投影,得到的投影图。三视图:几何体的正视图、侧视图和俯视图统称为几何体的三视图。三视图的画法规则:长对正,高平齐,宽相等。长对正:正视图与俯视图的长相等,且相互对正;高平齐:正视图与侧视图的高度相等,且相互对齐;宽相等:俯视图与侧视图的宽度相等。3、画长方体的三视图:参考资料,少熬夜!正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观察到有几何体的正投影图,它们都是平面图形。长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。4、画圆柱、圆锥的三视图:5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视图。(三)巩固练习课本P15练习1、2;P20习题[A组]2。(四)归纳整理请学生回顾发表如何作好空间几何体的三视图(五)布置作业课本P20习题[A组]1。高一数学必修二教案5学习目标1、结合已学过的数学实例,了解归纳推理的含义;2.能利用归纳进行简单的推理,体会并认识归纳推理在数学发现中的作用。2、结合已学过的数学实例,了解类比推理的含义;3、能利用类比进行简单的推理,体会并认识合情推理在数学发现中的作用。学习过程一、课前准备问题3:因为三角形的内角和是,四边形的内角和是,五边形的内角和是……所以n边形的内角和是新知1:从以上事例可一发现:叫做合情推理。归纳推理和类比推理是数学中常用的合情推理。新知2:类比推理就是根据两类不同事物之间具有推测其中一类事物具有与另一类事物的性质的推理。简言之,类比推理是由的推理。新知3归纳推理就是根据一些事物的,推出该类事物的的推理。归纳是的过程例子:哥德巴赫猜想:观察6=3+3,8=5+3,10=5+5,12=5+7,14=7+7,16=13+3,18=11+7,20=13+7,……,50=13+37,……,100=

1 / 16
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功