第1页(共30页)2016年陕西省西安市碑林区西北工大附中中考数学七模试卷一、选择题(共10小题,每小题3分,计30分)1.﹣的倒数等于()A.B.﹣C.﹣2D.22.在以下”绿色食品、响应环保、可回收物、节水“四个标志图案中,是中心对称图形的是()A.B.C.D.3.下面计算正确的是()A.6b﹣5b=1B.2m+3m2=5m3C.﹣(c﹣d)=﹣c+dD.2(a﹣b)=2a﹣b4.如图,已知AB∥CD,BC平分∠ABE,∠C=29°,则∠BED的度数是()A.18°B.29°C.58°D.38°5.不等式组的解集在数轴上表示为()A.B.C.D.6.如图,⊙O的直径AB垂直于弦CD,垂足是E,∠A=30°,AB=4,则CD的长为()A.2B.6C.4D.3第2页(共30页)7.如图,将矩形ABCD绕点A旋转至矩形AB'C'D'位置,此时AC'的中点恰好与D点重合,AB'交CD于点E,若AD=3,则△AEC的面积为()A.12B.4C.3D.68.如图,一圆弧过方格的格点A、B、C,试在方格中建立平面直角坐标系,使点A的坐标为(﹣2,3),则该圆弧所在圆的圆心坐标是()A.(﹣1,1)B.(0,1)C.(﹣3,1)D.(﹣3,0)9.如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P.则tan∠APD的值是()A.2B.1C.0.5D.2.510.在平面直角坐标系中,已知点A(0,3),B(1,0),C(0,﹣2),D(3,4),求过其中三个点的抛物线的顶点坐标是()A.(﹣,)B.(,﹣)C.(﹣,﹣)D.(,)二、填空题(共1小题,每小题3分,计12分)11.因式分解:a3﹣9ab2=.请从12,13两个小题中任选一个作答,若多选,则按第12题计分.第3页(共30页)12.如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA=.13.在Rt△ABC中,∠C=90°,AC=5.3,BC=2.8,则∠A的度数约为(用科学计算器计算,结果精确到0.1°).14.设A(x1,y1),B(x2,y2)为双曲线y=﹣图象上的点,若x1>x2时y1<y2,则点B(x2,y2)在第象限.15.如图,在Rt△ABO中,∠AOB=90°,AO+BO=5,延长AO到C,使OC=3,延长BO到D,使OD=4,连接BC、CD、DA,则四边形ABCD面积的最大值为.三、解答题(共11小题,计78分)16.计算:.17.解方程:.18.如图,已知矩形ABCD,分别在边AD,BC上找一点E和F,使四边形DEBF是菱形.19.为了解某校九年级男生的体能情况,体育老师从中随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成尚不完整的扇形图和条形图,根据图形信息回答下列问题:(1)本次抽测的男生有人,抽测成绩的众数是;(2)请将条形图补充完整;第4页(共30页)(3)若规定引体向上6次以上(含6次)为体能达标,则该校125名九年级男生中估计有多少人体能达标?20.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,分别以直角边AC和斜边AB向外作等边△ACD、等边△ABE,过点E,作EF⊥AB,垂足为F,连结DF.求证:AE=DF.21.某中学教学楼的后面靠近一座山坡,坡面下是一块草地,如图所示,BC∥AD,斜坡AB=160米,坡度i=:1,为防止山体滑坡,保障学生安全,学校决定不仅加固教学楼,还对山坡进行改造,当坡角不超过45°时可保证山体不滑坡,改造时保持坡脚A不动,从坡顶B沿BC进到E处,问BE至少是多少米?(结果保留根号)22.如图,某公司组织员工假期去旅游,租用了一辆耗油量为每百公里约为25L的大巴车,大巴车出发前油箱有油100L,大巴车的平均速度为80km/h,行驶若干小时后,由于害怕油箱中的油不够,在途中加了一次油,油箱中剩余油量y(L)与行驶时间x(h)之间的关系如图所示,请根据图象回答下列问题:(1)汽车行驶h后加油,中途加油L;(2)求加油前油箱剩余油量y与行驶时间x的函数解析式;(3)若当油箱中剩余油量为10L时,油量表报警,提示需要加油,大巴车不再继续行驶,则该车最远能跑多远?此时,大巴车从出发到现在已经跑了多长时间?第5页(共30页)23.如图是一个被平均分成6等份的转盘,每一个扇形中都标有相应的数字,甲乙两人分别转动转盘,设甲转动转盘后指针所指区域内的数字为x,乙转动转盘后指针所指区域内的数字为y(当指针在边界上时,重转一次,直到指向一个区域为止).(1)直接写出甲转动转盘后所指区域内的数字为负数的概率;(2)用树状图或列表法,求出点(x,y)落在第二象限内的概率.24.如图,在△ABC中,以AC为直径的⊙O交BC于D,过C作⊙O的切线,交AB的延长线于P,∠PCB=∠BAC.(1)求证:AB=AC;(2)若sin∠BAC=,求tan∠PCB的值.25.如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,A点在原点的左侧,B点在原点右侧,与y轴交于C点,点P是x轴下方的抛物线上的一动点.(1)求A、B、C三点坐标;(2)当点P运动到什么位置时,CP∥AB,且AC=BP,直接写出此时P点的坐标:P第6页(共30页)(,)(3)连接PO、PC,并把抛物线沿CO翻折,此时,可得到四边形POP'C,那么,是否存在点P,使四边形POP'C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.26.阅读理解如图1,在△ABC中,当DE∥BC时可以得到三组成比例线段:①②③;反之,当对应线段成比例时也可以推出DE∥BC.理解运用三角形的内接四边形是指顶点在三角形各边上的四边形.(1)如图2,已知矩形DEFG是△ABC的一个内接矩形,将矩形DEFG延CB方向向左平移得矩形PBQH,其中顶点D、E、F、G的对应点分别为F、B、Q、H,在图2中画出平移后的图形;(2)在(1)所得图形中,连接CH并延长交BP的延长线于点R,连接AR,求证:AR∥BC;综合实践(3)如图3,某个区有一块三角形空地,已知△ABC空地的边AB=400米、BC=600米,∠ABC=45°;准备在△ABC内建设一个内接矩形广场DEFG(点E、F在边BC上,点D、G分别在边AB和AC上),三角形其余部分进行植被绿化,按要求欲使矩形DEFG的对角线EG最短,请在备用图中画出使对角线EG最短的矩形?并求出对角线EG最短距离第7页(共30页)(不要求证明).第8页(共30页)2016年陕西省西安市碑林区西北工大附中中考数学七模试卷一、选择题(共10小题,每小题3分,计30分)1.﹣的倒数等于()A.B.﹣C.﹣2D.2【考点】倒数.【专题】常规题型.【分析】根据倒数定义可知,﹣的倒数是﹣2.【解答】解:﹣的倒数是﹣2.故选:C.【点评】本题主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.在以下”绿色食品、响应环保、可回收物、节水“四个标志图案中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形与轴对称图形的概念解答即可.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,不是中心对称图形.故错误.故选B.【点评】本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对第9页(共30页)称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.下面计算正确的是()A.6b﹣5b=1B.2m+3m2=5m3C.﹣(c﹣d)=﹣c+dD.2(a﹣b)=2a﹣b【考点】整式的加减.【分析】根据合并同类项得法则进行计算即可.【解答】解:A、6b﹣5b=b,故A错误;B、2m+3m2,不能合并,故B错误;C、﹣(c﹣d)=﹣c+d,故C正确;D、2(a﹣b)=2a﹣2b,故D错误;故选C.【点评】本题考查了整式的加减,掌握去括号与合并同类项是解题的关键.4.如图,已知AB∥CD,BC平分∠ABE,∠C=29°,则∠BED的度数是()A.18°B.29°C.58°D.38°【考点】平行线的性质.【分析】根据平行线的性质得到∠ABC=∠C=29°,再根据角平分线的定义得到∠ABC=∠EBC=29°,然后利用三角形外角性质计算即可.【解答】解:∵AB∥CD,∴∠ABC=∠C=29°,又∵BC平分∠ABE,∴∠ABC=∠EBC=29°,∴∠BED=∠C+∠EBC=29°+29°=58°.故选C.【点评】本题考查了平行线的性质:两直线平行,内错角相等.也考查了三角形外角性质以及角平分线的定义.第10页(共30页)5.不等式组的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:,由①得,x>1,由②得,x≥2,故此不等式组得解集为:x≥2.在数轴上表示为:.故选A.【点评】本题考查的是在数轴上表示不等式组得解集,熟知“小于向左,大于向右”是解答此题的关键.6.如图,⊙O的直径AB垂直于弦CD,垂足是E,∠A=30°,AB=4,则CD的长为()A.2B.6C.4D.3【考点】垂径定理;勾股定理.【分析】根据垂径定理和勾股定理即可得到结论.【解答】解:连接OC,如图所示:第11页(共30页)则∠BOC=2∠A=60°,∵AB⊥CD,AB=4,∴OE=OC=,∴CE=3,∴CD=2CE=6.故选B.【点评】本题考查了垂径定理、圆周角定理以及三角函数;熟练掌握圆周角定理,由垂径定理求出CE是解决问题的关键.7.如图,将矩形ABCD绕点A旋转至矩形AB'C'D'位置,此时AC'的中点恰好与D点重合,AB'交CD于点E,若AD=3,则△AEC的面积为()A.12B.4C.3D.6【考点】旋转的性质;矩形的性质.【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,根据正切的概念求出CD,确定出EC的长,即可求出三角形AEC面积.【解答】解:由旋转的性质可知:AC=AC',∵D为AC'的中点,∴AD=AC,第12页(共30页)∵ABCD是矩形,∴AD⊥CD,∴∠ACD=30°,∵AB∥CD,∴∠CAB=30°,∴∠C'AB'=∠CAB=30°,∴∠EAC=30°,∴AE=EC,∴DE=AE=CE,∴CE=2DE,CD=AD=3,∴EC=2,∴△AEC的面积=×EC×AD=3,故选:C.【点评】本题考查了旋转的性质、矩形的性质、特殊角的三角函数,三角形面积计算等知识点,清楚旋转的“不变”特性是解答的关键.8.如图,一圆弧过方格的格点A、B、C,试在方格中建立平面直角坐标系,使点A的坐标为(﹣2,3),则该圆弧所在圆的圆心坐标是()A.(﹣1,1)B.(0,1)C.(﹣3,1)D.(﹣3,0)【考点】垂径定理;坐标与图形性质.【分析】连接AC,作出AB、AC的垂直平分线,其交点即为圆心.【解答】解:如图所示,连接AC,作出AB、AC的垂直平分线,其交点即为圆心.∵点A的坐标为(﹣2,3),第13页(共30页)∴该圆弧所在圆的圆心坐标是(﹣3,0).故选:D.【点评】此题主要考查了垂径定理的应用,根据线段垂直平分线上的点到这条线段两端点的距离相等,找到圆的半径,半径的交点即为圆心是解题关键.9.如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P.则tan∠APD的值是()A.2B.1C.0.5D.2.5【考点】相似三角形的判定与性质;勾股定理的逆定理