数学二次根式教案【范例5篇】

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

好文供参考!1/19数学二次根式教案【范例5篇】【引读】这篇优秀的文档“数学二次根式教案【范例5篇】”由网友上传分享,供您参考学习使用,希望此文对您有所帮助,喜欢的话就分享给下载吧!次根式教案【第一篇】一、教学目标1.了解二次根式的意义;2.掌握用简单的一元一次不等式解决二次根式中字母的取值问题;3.掌握二次根式的性质和,并能灵活应用;4.通过二次根式的计算培养学生的逻辑思维能力;5.通过二次根式性质和的介绍渗透对称性、规律性的数学美。二、教学重点和难点重点:(1)二次根的意义;(2)二次根式中字母的取值范围。难点:确定二次根式中字母的取值范围。三、教学方法启发式、讲练结合。四、教学过程(一)复习提问好文供参考!2/191.什么叫平方根、算术平方根?2.说出下列各式的意义,并计算:通过练习使学生进一步理解平方根、算术平方根的概念。观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中,表示的是算术平方根。(二)引入新课我们已遇到的这样的式子是我们这节课研究的内容,引出:新课:二次根式定义:式子叫做二次根式。对于请同学们讨论论应注意的问题,引导学生总结:(1)式子只有在条件a0时才叫二次根式,是二次根式吗?呢?若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。(2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次根式指的是某种式子的外在形态。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答当字母取何值时,下列各式为二次根式:(1)(2)(3)(4)好文供参考!3/19分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式解:(1)∵a、b为任意实数时,都有a2+b20,当a、b为任意实数时,是二次根式(2)-3x0,x0,即x0时,是二次根式。(3),且x0,x0,当x0时,是二次根式。(4),即,故x-20且x-20,x2.当x2时,是二次根式。例4下列各式是二次根式,求式子中的字母所满足的条件:(1);(2);(3);(4)分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,.即:只有在条件a0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。解:(1)由2a+30,得。(2)由,得3a-10,解得。(3)由于x取任何实数时都有|x|0,因此,|x|+,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。(4)由-b20得b20,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.(三)小结(引导学生做出本节课学习内容小结)1.式子叫做二次根式,实际上是一个非负的实数a的算术平方根的表达式。好文供参考!4/192.式子中,被开方数(式)必须大于等于零。(四)练习和作业练习:1.判断下列各式是否是二次根式分析:(2)中,,是二次根式;(5)是二次根式。因为x是实数时,x、x+1不能保证是非负数,即x、x+1可以是负数(如x0时,又如当x-1时=,因此(1)(3)(4)不是二次根式,(6)无意义。是怎样的实数时,下列各式在实数范围内有意义?五、作业教材习题;A组1;B组1.次根式教案【第二篇】教学目标1.运用法则进行二次根式的乘除运算;2.会用公式化简二次根式。教学重点运用进行化简或计算教学难点好文供参考!5/19经历二次根式的乘除法则的探究过程教学过程一、情境创设:1.复习旧知:什么是二次根式?已学过二次根式的哪些性质?2.计算:二、探索活动:1.学生计算;2.观察上式及其运算结果,看看其中有什么规律?3.概括:得出:二次根式相乘,实际上就是把被开方数相乘,而根号不变。将上面的公式逆向运用可得:积的算术平方根,等于积中各因式的算术平方根的积。三、例题讲解:1.计算:2.化简:小结:如何化简二次根式?1.(关键)将被开方数因式分解或因数分解,使之出现“完全平方数”或“完全平方式”;结果中,被开方数应不含能开得尽方的因数或因式。四、课堂练习:好文供参考!6/19(一).P62练习1、2其中2中(5)注意:不是积的形式,要因数分解为36×16=242.(二).P673计算(2)(4)补充练习:1.(x0,y0)2.拓展与提高:化简:1).(a0,b0)2).(y2.若,求m的取值范围。☆3.已知:,求的值。五、本课小结与作业:小结:二次根式的乘法法则作业:1).课课练P9-102).补充习题次根式教案【第三篇】目标1.熟练地运用二次根式的性质化简二次根式;2.会运用二次根式解决简单的实际问题;好文供参考!7/193.进一步体验二次根式及其运算的实际意义和应用价值。教学设想本节课的重点是:二次根式及其运算的实际应用;难点是:例7涉及多方面的知识和综合运用,思路比较复杂。教学程序与策略一、预习检测:1.解决节前问题:如图,架在消防车上的云梯AB长为15m,AD:BD=1:,云梯底部离地面的距离BC为2m。你能求出云梯的顶端离地面的距离AE吗?归纳:在日常生活和生产实际中,我们在解决一些问题,尤其是涉及直角三角形边长计算的问题时经常用到二次根式及其运算。二、合作交流:1、:如图,扶梯AB的坡比(BE与AE的长度之比)为1:,滑梯CD的'坡比为1:,AE=米,BC=CD。一男孩从扶梯走到滑梯的顶部,然后从滑梯滑下,他经过了多少路程(结果要求先化简,再取近似值,精确到米)让学生有充分的时间阅读问题,并结合图形分析问题:(1)所求的路程实际上是哪些线段的和?哪些线段的长是已知的?哪些线段的长是未知的?它们之间有什么关系?好文供参考!8/19(2)列出的算式中有哪些运算?能化简吗?注意解题格式教学程序与策略三、巩固练习:完成课本P17、1,组长检查反馈;四、拓展提高:1:如图是一张等腰三角形彩色纸,AC=BC=40cm,将斜边上的高CD四等分,然后裁出3张宽度相等的长方形纸条。(1)分别求出3张长方形纸条的长度。(2)若用这些纸条为一幅正方形美术作品镶边(纸条不重叠),如右图,正方形美术作品的面积最大不能超过多少cm。师生共同分析解题思路,请学生写出解题过程。五、课堂小结:1.谈一谈:本节课你有什么收获?2.运用二次根式解决简单的实际问题时应注意的的问题六、堂堂清1.作业本(2)2.课本P17页:第4、5题选做。次根式【第四篇】教学建议知识结构好文供参考!9/19.重难点分析本节的重点是的化简。本章自始至终围绕着与计算进行,而的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论。本节的难点是正确理解与应用公式.这个公式的表达形式对学生来说,比较生疏,而实际运用时,则要牵涉到对字母取值范围的讨论,学生往往容易出现错误。教法建议1.性质的引入方法很多,以下2种比较常用:(1)设计问题引导启发:由设计的问题1)、、各等于什么?2)、、各等于什么?启发、引导学生猜想出(2)从算术平方根的意义引入。2.性质的巩固有两个方面需要注意:(1)注意与性质进行对比,可出几道类型不同的题进行比较;(2)学生初次接触这种形式的表示方式,在教学时要注好文供参考!10/19意细分层次加以巩固,如单个数字,单个字母,单项式,可进行因式分解的多项式,等等。(第1课时)一、教学目标1.掌握二次根式的性质2.能够利用二次根式的性质化简二次根式3.通过本节的学习渗透分类讨论的数学思想和方法二、教学设计对比、归纳、总结三、重点和难点1.重点:理解并掌握二次根式的性质2.难点:理解式子中的可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式。四、课时安排1课时五、教具学具准备投影仪、胶片、多媒体六、师生互动活动设计复习对比,归纳整理,应用提高,以学生活动为主七、教学过程一、导入新课我们知道,式子()表示非负数的算术平方根。好文供参考!11/19问:式子的意义是什么?被开方数中的表示的是什么数?答:式子表示非负数的算术平方根,即,且,从而可以取任意实数。二、新课计算下列各题,并回答以下问题:(1);(2);(3);(4);(5);(6)(7);(8)1.各小题中被开方数的幂的底数都是什么数?2.各小题的结果和相应的被开方数的幂的底数有什么关系?3.用字母表示被开方数的幂的底数,将有怎样的结论?并用语言叙述你的结论。答:(1);(2);(3);(4);(5);(6)(7);(8).1.(1),(2),(3)各题中的被开方数的幂的底数都是正数;(4),(5),(6),(7)各题中的被开方数的幂的底数都是负数;(8)题被开方数的幂的底数是0.2.(1),(2),(3),(8)各题的计算结果和相应的被开方数的幂的底数都分别相等;(4),(5),(6),(7)各题的计算好文供参考!12/19结果和相应的被开方数的幂的底数分别互为相反数。3.用字母表示(1),(2),(3),(8)各题中被开方数的幂的底数,有(),用字母表示(4),(5),(6),(7)各题中被开方数的幂的底数,有().一个非负数的平方的算术平方根,等于这个非负数本身;一个负数的平方的算术平方根,等于这个负数的相反数。问:请把上述讨论结论,用一个式子表示。(注意表示条件和结论)答:请同学回忆实数的绝对值的代数意义,它和上述二次根式的性质有什么联系?答:填空:1.当_________时,;2.当时,,当时,;3.若,则________;4.当时,.答:1.当时,;好文供参考!13/192.当时,,当时,;3.若,则;4.当时,.例1化简().分析:可以利用积的算术平方根的性质及二次根式的性质化简。解,因为,所以,所以.指出:在化简和运算过程中,把先写成,再根据已知条件中的取值范围,确定其结果。例2化简().分析:根据二次根式的性质,当时,.解.例3化简:(1)();(2)().分析:根据二次根式的性质,当时,.解(1).(2).注意:(1)题中的被开方数,因为,所以.(2)题中的被开方数,因为,所以.这里的取值范围,在已知条件中没有直接给出,但可以由已知条件分析而得出。好文供参考!14/19例4化简.分析:根据二次根式的性质,有.所以要比较与3及1与的大小以确定及的符号,然后再进行化简。解因为,,所以,.所以.三、课堂练习1.求下列各式的值:(1);(2).2.化简:(1);(2);(3)();(4)().3.化简:(1);(2);(3);(4);(5);(6)().答案:1.(1);(2).2.(1);(2);(3);(4).好文供参考!15/193.(1)4;(2);(3);(4)-1;(5)4;(6)-1.四、小结1.二次根式的意义是,所以,因此,其中可以取任意实数。2.化简形如的二次根式,首先可把写成的形式,再根据已知条件中字母的取值范围,确定其结果。3.在化简中,注意运用题设中的隐含条件,如二次根式有意义的条件是被开方,这是隐含条件。五、作业1.化简:(1);(2);(3)();(4)();(5);(6)(,);(7)().2.化简:(1);(2)();(3)(,).答案:1.(1)-30;(2);(3);(4);(5);(6);(7).好文供参考!16/192.(1)2;(2)0;(3).次根式【第五篇】一、教学过程(一)复习提问1.什么叫二次根式?2.下列各式是二次根式,求式子中的字母所满足的条件:(3)∵x取任何值都有2x2≥0,所以2x2+1>0,故x的取值为任意实数。(二)二次根式的简单性质上节课我们已经学习了二次根式的定义,并了解了第一个简单性质我们知道,正数a有两个平方根,分别记作零的平方根是零。引导学生总结出,其中,就是一个非负数a的算术平方根。将符号看作开平方求算术平方根的运算,看作将一个数进行平方的运算,而开平方运算和平方运算是互为逆运算,因而有:这里需要注意的是公式成立的条件是a≥0,提问学生,a可以代表一个代数式吗?请分析:引导学生答如时才成立。时才成立,即

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功