数列教案5篇我分享的“数列教案5篇”,如果我的策略能够帮助您解决问题请把它收藏起来。根据教学要求老师在上课前需要准备好教案课件,只要课前把教案课件写好就可以。教案是提高学生学习效果的重要手段。数列教案篇11、若为等差数列,且则;2、若为等差数列,当为奇数时,,(中间项),当n为偶数时,。3、若为等差数列,则连续项的和组成的数列仍为等差数列。4、等差数列中,若,则,是其前项之和,有如下性质,(2)若则;(3)若则;(4)若,则。5、有两个等差数列、,若,则。6、若为等差数列,为公差,则。7、若、都是等差数列,公差分别为、,若这两个数列有公共项,则公共项组成的新数列一般仍为等差数列。8、等差数列中,(d为公差)。若公差非零的等差数列中的三项构成等比数列,则其公比为:。9、等差数列前项和公式。10、在等差数列中,有关的最值问题常用邻项变号法来求解,分类如下:(1)当时,满足的项数,使得取最大值;(2)当时,满足的项数,使得取最小值;说明:存在最大值,只需,存在最小值,只需。11、若为等比数列,则连续项的和组成的数列仍为等比数列。()。12、若为等比数列,且则;,13、若为等比数列,、、成等差数列,则、、成等比数列,其中、、14、若为等比数列,则。15、若为等差数列,则。16、;;18、由递推公式求数列通项公式类型与方法归类:配成,等比数列,其中;(2)若,考察特征方程,,设其两根为,分类讨论如下:特别地:选择或填空题中,若所求数列某项的项数较大,且求通项不容易,则该数列可能为周期数列,可通过归纳求某项。(1)若为等差数列,为等比数列,则数列前项的和可用错位相减法求得。(2)如果一个数列,与首末两项等距离的两项之和等于首末两项之和,这样的数列可用倒序相加法求和。求的值,就可用倒序相加法求和。(3)若通项为个连续自然数积的倒数,则一般可用裂项法求前项的和。如是公差为的等差数列,则有,(4)当一个数列既不是等差数列又不是等比数列时,如果能将这个数列分解为一个等差数列和一个等比数列对应项相加得到的一个新数列,此时可用分组法求和(有时按奇数项和偶数项分组)。20、数列是公差非零的等差数列的充要条件是:是关于的一次函数,或是关于的不含常数项的二次函数。(有时可设,若,则是常数列)21、等差数列的前项的算术平均值是等差数列,等比数列前项的几何平均值是等比数列。22、一般地,若为等差数列,是的前项和,则也是等差数列。23、等差数列中,,且,则使前项和成立的最大自然数是。数列教案篇2一、教材分析1.从在教材中的地位与作用来看《等比数列的前n项和》是数列这一章中的一个重要内容,从教材的编写顺序上来看,等比数列的前n项和是第一章“数列”第六节的内容,它是“等差数列的前n项和”与“等比数列”内容的延续、与前面学习的函数等知识也有着密切的联系。就知识的应用价值上来看,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。就内容的人文价值上来看,等比数列的前n项和公式的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生应用意识和数学能力的良好载体。2.从学生认知角度来看从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。3.学情分析教学对象是刚进入高二的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但对问题的分析缺乏深刻性和严谨性。4.重点、难点教学重点:公式的推导、公式的特点和公式的运用.教学难点:公式的推导方法和公式的灵活运用.公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点。二、目标分析1.知识与技能目标:理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题。2.过程与方法目标:通过公式的推导过程,培养学生猜想、分析、综合的思维能力,提高学生的建模意识及探究问题、分析与解决问题的能力,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质。3.情感态度与价值观:通过经历对公式的探索,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,从中获得成功的体验,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美。用数学的观点看问题,一些所谓不可理解的事就可以给出合理的解释,从而帮助我们用科学的态度认识世界。三、教学方法与教学手段本节课属于新授课型,主要利用计算机辅助教学,采用启发探究,合作学习,自主学习等的教学模式.四、教学过程分析学生是认知的主体,也是教学活动的主体,设计教学过程必须遵循学生的认知规律,引导学生去经历知识的'形成与发展过程,结合本节课的特点,我按照自主学习的教学模式来设计如下的教学过程,目的是在教学过程中促使学生自主学习,培养自主学习的习惯和意识,形成自主学习的能力。1.创设情境,提出问题一个穷人到富人那里去借钱,原以为富人不愿意,哪知富人一口答应了下来,但提出了如下条件:在30天中,富人第一天借给穷人1万元,第二天借给穷人2万元,以后每天所借的钱数都比上一天多1万;但借钱第一天,穷人还1分钱,第二天还2分钱,以后每天所还的钱数都是上一天的两倍,30天后互不相欠.穷人听后觉得挺划算,本想定下来,但又想到此富人是吝啬出了名的,怕上当受骗,所以很为难。”请在座的同学思考讨论一下,穷人能否向富人借钱?启发引导学生数学地观察问题,构建数学模型。学生直觉认为穷人可以向富人借钱,教师引导学生自主探求,得出:穷人30天借到的钱:(万元)穷人需要还的钱:?2.学生探究,解决情境2教师紧接着把如何求?的问题让学生探究,①若用公比2乘以上面等式的两边,得到②若②式减去①式,可以消去相同的项,得到:(分)≈1073(万元)>465(万元)由此得出穷人不能向富人借钱【设计意图】留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是很显然的事,但在学生看来却是“不可思议”的,因此教学中应着力在这儿做文章,从而培养学生的辩证思维能力.解决情境问题:经过比较、研究,学生发现:1、2两式有许多相同的项,把两式相减,相同的项就可以消去了,得到:≈1073(万元)>465(万元)。老师强调指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么1式两边要同乘以2呢?【设计意图】经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了,让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心,同时也为推导一般等比数列前n项和提供了方法。3.类比联想,解决问题这时我再顺势引导学生将结论一般化,设等比数列为,公比为q,如何求它的前n项和?让学生自主完成,然后对个别学生进行指导。一般等比数列前n项和:即方法:错位相减法这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时sn=?在学生推导完成之后,我再问:由得【设计意图】在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感。4.小组合作,交流展示探究1.求和探究2.求等比数列的第5项到第10项的和.方法1:观察、发现:.方法2:此等比数列的连续项从第5项到第10项构成一个新的等比数列。探究3:求的前n项和.【设计意图】采用变式教学设计题组,深化学生对公式的认识和理解,通过直接套用公式、变式运用公式、研究公式特点这三个层次的问题解决,促进学生新的数学认知结构的形成.通过以上形式,让全体学生都参与教学,以此培养学生自主学习的意识.解题时,以学生分析为主,教师适时给予点拨。5.总结归纳,加深理解以问题的形式出现,引导学生回顾公式、推导方法,鼓励学生积极回答,然后老师再从知识点及数学思想方法两方面总结。1.等比数列的前n项和公式2.数学思想:1分类讨论2方程思想3.数学方法:错位相减法【设计意图】以此培养学生的口头表达能力,归纳概括能力。6.当堂检测1口答:在公比为q的等比数列中若,则________,若,则________若=3,=81,求q及,若,求及q.2判断是非:①()②()③若③且,则()【设计意图】对公式的再认识,剖析公式中的基本量及结构特征,识记公式,并加强计算能力的训练。7.课后作业,分层练习必做:P30习题1—3A组第1题,选作题1:求的前n项和(2)思考题:能否用其他方法推导等比数列前n项和公式.【设计意图】布置弹性作业以使各个层次的学生都有所发展.让学有余力的学生有思考的空间,便于学生开展自主学习。五、评价分析本节课通过推导方法的研究,使学生掌握了等比数列前n项和公式.错位相减:变加为减,等价转化;递推思想:纵横联系,揭示本质;学生从中深刻地领会到推导过程中所蕴含的数学思想,培养了学生思维的深刻性、敏锐性、广阔性、批判性.同时通过展示交流,学生点评,教师总结,使学生既巩固了知识,又形成了技能,在此基础上,通过民主和谐的课堂氛围,培养了学生自主学习、合作交流的学习习惯,也培养了学生勇于探索、不断创新的思维品质,形成学习能力。六、教学设计说明1.情境设置生活化.本着新课程的教学理念,考虑到高二学生的心理特点,让学生学生初步了解“数学来源于生活”,采用故事的形式创设问题情景,意在营造和谐、积极的学习气氛,激发学生主动探究的欲望。2.问题探究活动化.教学中本着以学生发展为本的理念,充分给学生想的时间、说的机会以及展示思维过程的舞台,通过他们自主学习、合作探究,展示学生解决问题的思想方法,共享学习成果,体验数学学习成功的喜悦.通过师生之间不断合作和交流,发展学生的数学观察能力和语言表达能力,培养学生思维的发散性和严谨性。3.辨析质疑结构化.在理解公式的基础上,及时进行正反两方面的“短、平、快”填空和判断是非练习.通过总结、辨析和反思,强化了公式的结构特征,促进学生主动建构,有助于学生形成知识模块,优化知识体系。4.巩固提高梯度化.例题通过公式的正用和逆用进一步提高学生运用知识的能力;由教科书中的例题改编而成,并进行适当的变式,可以提高学生的模式识别的能力,培养学生思维的深刻性和灵活性。5.思路拓广数学化.从整理知识提升到强化方法,由课内巩固延伸到课外思考,变“知识本位”为“学生本位”,使数学学习成为提高学生素质的有效途径。以生活中的实例作为思考,让学生认识到数学来源于生活并应用于生活,生活中处处有数学.6.作业布置弹性化.通过布置弹性作业,为学有余力的学生提供进一步发展的空间,有利于丰富学生的知识,拓展学生的视野,提高学生的数学素养.七.教学反思学生的根据高二学生心理特点、教材内容、遵循因材施教原则和启发性教学思想,本节课的教学策略与方法我采用规则学习和问题解决策略,即“案例—公式—应用”,案例为浅层次要求,使学生有概括印象。公式为中层次要求,由浅入深,重难点集中推导讲解,便于突破。应用为综合要求,多角度、多情境中消化巩固所学,反馈验证本节教学目标的落实。其中,案例是基础,使学生感知教材;公式为关键,使学生理解教材;练习为应用,使学生巩固知识,举一反三。在这三步教学中,以启发性强的小设问层层推导,辅之以学生的分组小讨论并充分运用直观完整的板书和计算机课件等教辅用具、手段,改变教师讲、学生听的填鸭式教学模式,充分体现学生是主体,教师教学服务于学生的思路,而且学生通过“案例—公式—应用”,由浅入深,由感性到理性,由直观到抽象,不仅加深了学生理解巩固与应用,也培养了思维能力。这节课总体上感觉备课比较充分,各个环节相衔接,能够形成一节完整就为系统的课。本节课教学过程分为导入新课、公式推