下载最新免费模拟卷,到公众号:一枚试卷君黄冈市2022年高三9月调研考试数学答案一、选择题题号123456789101112答案BBACDADBBDABDBCABC二、.填空题13.3214.2115.),1(16.2ea三、解答题17解析:(1)0nm,0cos3sinBaAb,BABAcossin3sinsin,,0sinA3tan,cos3sinBBB,),(0B,3B............5分(2)由,3b根据正弦定理得CcAasinsin23sinb,)32sin(2sin6sin2sin63AACAca132)sin(349cos3sin7AAA,其中73tan,当且仅当337tan2πAA即时等号成立.ca3的最大值为132..............................................................................10分18.解析:(1)02)1(22nnanann可以分解为0)))(12((nanann,12,0naann。1133nnnbb,左右两边同除以13n,得nnbbbnnnnnn113,13311,nnnb3...........................6分(2)211)12(nianinii,nnnnnnnnnnnb321)3)1(3(213)1)1(3(2131433)12(41)33(413211111nnnninnb211nbanini433)12(411nn。......................................12分19.(1)显然0x,axxaxxxaxxf231)(ln)2()('2=)1)(ln2(xax即,0)1)(ln2()(xaxxg对0x恒成立,当e0x时,e;2)2(,02,01lnmaxxaaxx当ex时,e2)2(,02,01lnminxaaxx.综上,e2a..................................................5分(2)由(1)知)1)(ln2()(xaxxg①当0a时,,02ax当)(,0)('xfxfex时,单调递增,当)(,0)('0xfxfex时,单调递减,即当0a时,)(xf在)0e,(上递减,),(e上递增..........................7分②当0a时,由(1)知当)(,0)('e2xfxfa时,在),0(单调递增,......8分)(2xfea时,当在)2,(ae上单调递减,在),2(),,0(ae上单调递增,...........10分)(20xfea时,当在)2ea,(上递减,),(),20ea,(上递增.........................12分20.(1)由题意可得10cosθEH,10sinθFH,10sinθcosθEF,由于10tanθ103BE,10103tanθAF,所以3tanθ33,ππθ,63,................3分101010Lcosθsinθsinθcosθ,ππθ,.63即sinθcosθ1L10sinθcosθ,ππθ,.63..........................6分2设sinθcosθt,则2t1sinθcosθ2,由于ππθ,63,π31sinθcosθt2sinθ,2.42..................8分由于20Lt1在31,22上是单调减函数,当31t2时,即πθ6或πθ3时,L取得最大值为2031m.......12分21.(1)2)sincoscos(sin)(',1)0(xxxxexffx且0)0(',2cos2fxex,所以切线方程为1),0(01yxy即..............3分(2)由(1)可知)sin(cos2)('',2cos2)('xxexfxexfxx,当)(',0)('']4,0[xfxfx时,递增,又,0)0('f,递增)(,0)('xfxf......................5分递减时,,(当)(',0)('']24xfxfx,422)4(',02)2('eff2,2412eee,02222)4('44)(eef,,0)(')2,4(00xfx使当0)(',2,0)(',400xfxxxfxx,递减递增递增,,在()2,(,),4()40)(00xxxf,...................................8分2)2(ef,而xxhxe)(在,1上单调递增(证明略),112.1)12(,2,12222eeeeee,1)2(f,1)0()(,1)0(minfxff...........................12分22.(1))(1)2(3nnanS当)(时2)1(3,211nnanSn,(1)-(2)得时]4,0[x,)1()2(31nnnanana11,)1()111nanaanannnnn即(,变形为2121)1()1(11annannann)2)1(21nnnan(,1n时也适合.*)n)1(21Nnnan(...............................................................4分(2)构造函数)0(sin)(xxxxF,,01cos)('xxF上递减,在),0()(xFxxxFxFsin0,0)0()(时.令nax则有0sinnnaa....................7分(3)01sin],10(1nnaa,,原不等式等价于证明:2)1sin1(ln)1sin1(ln)1sin1(ln)1sin1(ln121nnaaaa,)0()1ln(xxx,(证明略))111(2)1(211sin)1sin1ln(nnnnaaannn令nn3,2,1,然后累加得)11131212112)1sin1(ln)1sin1(ln)1sin1(ln)1sin1(ln121nnaaaann(2)1112n(.原不等式得证。...................................................................12分下载最新免费模拟卷,到公众号:一枚试卷君