下载最新免费模拟卷,到公众号:一枚试卷君数学参考答案1.A2.D3.D4.A5.C6.C7.D8.B9.AB10.ABCD11.ABD12.BCD13.114.015.23π616.[0,]e17.(1)23cos22sin12fxxx23sin22sin1xx3sin2cos2xx2sin26x所以最小正周期22T,(2)(-1,2](3)∵12sin262fxx,∴1sin264x∵0,6x∴2662x,∴215cos21sin2664xx2sin22sin21266fxxx2sin2coscos2sin6666xx13151242423154.18(Ⅰ)由nnSan得,当2n时,111nnSan两式作差得:121nnaa,即1211nnaa,即11112nnaa,令1n得112a,所以1na是以12为首项,12为公比的等比数列.所以112nna,故112nna.(Ⅱ)由(Ⅰ)知212112nnnnbna,123211352222nnnTL234121113522222nnnTL两式作差得:2312312121112221111222222222222nnnnnTnnLL21121111121211111323222412222222212nnnnnnnn所以2332nnnT.19.(1)()cossinfxxxa,由(0)0f,可得10a,所以1a,经检验,满足题意.(2)因为()fx在,22上单调递增,所以0fx在,22上恒成立,即(cossin)axx在,22上恒成立.令(sincos)yxx,,22x,则2sin4yx,,22x因为,22x,所以3,444x,所以max1y,所以1a.所以实数a的取值范围为[1,).20(1)由题意知4A,7212122T,得周期T,∴22T当12x时,()fx取得最大值4,即4sin2412,得2,62kkZ,得2,3kkZ,又||Q,当0k时,3,即()4sin23fxx.(2)由已知()7()10hxfxt在区间,26上有两个实根,即方程14sin237tx在区间,26上有两个实根.,26xQ,222,333x,sin21,13x,4sin24,43x由于函数sinyx在区间2,32上单调递减,在区间,22上单调递增,在区间2,23上单调递减,又当2233x时,24sin233,当232x时,4sin42当232x时,4sin42,当2233x时,24sin233,如图所示:又方程有两个实根,∴14,237t或123,47t得27,1143t或1143,29t,即实数t的取值范围是:27,11431143,29tU21.(1)根据题意得:22222312bceaabc,解得2a,3b,1c,抛物线焦点1,0F,因此椭圆22:143xyC,拋物线2:4Eyx(2)设11223344:10,,,,,,,,lxtytAxyBxyPxyQxy,联立l与椭圆221:143xtyCxy,整理得:2234690tyty,判别式:222Δ(6)43491441ttt弦长公式:22212214411134tABtyytt所以2122131812341tSABtt联立l与抛物线24:1yxExty,整理得:2440yty,判别式:22Δ(4)44161tt弦长公式:2223411161PQtyytt,所以2222111112221PQASSPQtt,因为123SS…,因此2221813134ttt…,解得:6633t剟在y轴上截距162t„或162t…,因此在y轴上截距取值范66,,22.22(1)fx的定义域为0,,1aaxfxxx,当0a时,0fx恒成立,故fx在0,上单调递减;当0a时,令0fx得:0,xa,令0fx得:,xa,故fx在0,xa上单调递增,在,xa上单调递减;综上:当0a时,fx在0,上单调递减;当0a时,fx在0,xa上单调递增,在,xa上单调递减;(2)由(1)可知,要想fx有两个相异的零点12,xx,则0a,不妨设120xx,因为120fxfx,所以1122ln0,ln0axxaxx,所以1212lnlnxxaxx,要证212exx,即证12lnln2xx,等价于122xxaa,而1212lnln1xxaxx,所以等价于证明121212lnln2xxxxxx,即1212122lnxxxxxx,令12xtx,则1t,于是等价于证明21ln1ttt成立,设21ln1tgttt,1t222114011tgttttt,所以gt在1,上单调递增,故10gtg,即21ln1ttt成立,所以212exx,结论得证..下载最新免费模拟卷,到公众号:一枚试卷君