好文供参考!1/14一元二次方程复习教案【汇编4篇】【引读】这篇优秀的文档“一元二次方程复习教案【汇编4篇】”由网友上传分享,供您参考学习使用,希望此文对您有所帮助,喜欢的话就分享给下载吧!元二次方程【第一篇】一元二次方程第一课时教学内容一元二次方程概念及一元二次方程一般式及有关概念。教学目标了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其()派生的概念;应用一元二次方程概念解决一些简单题目。1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义。2.一元二次方程的一般形式及其有关概念。3.解决一些概念性的题目。4.态度、情感、价值观4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情。好文供参考!2/14重难点关键1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题。2.难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念。教学过程一、复习引入学生活动:列方程。问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?”大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?如果假设门的高为x尺,那么,这个门的宽为_______尺,根据题意,得________.整理、化简,得:__________.问题(2)如图,如果,那么点c叫做线段ab的黄金分割点。如果假设ab=1,ac=x,那么bc=________,根据题意,得:________.整理得:_________.问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形好文供参考!3/14的边长是多少?如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.整理,得:________.老师点评并分析如何建立一元二次方程的数学模型,并整理。二、探索新知学生活动:请口答下面问题。(1)上面三个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?或与以前多项式一样只有式子?老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程。因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式。一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。好文供参考!4/14例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项。分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项等。解:去括号,得:40-16x-10x+4x2=18移项,得:4x2-26x+22=0其中二次项系数为4,一次项系数为-26,常数项为22.例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项。分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式。解:去括号,得:x2+2x+1+x2-4=1移项,合并得:2x2+2x-4=0其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.三、巩固练习教材p32练习1、2好文供参考!5/14四、应用拓展例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程。分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17≠0即可。证明:m2-8m+17=(m-4)2+1∵(m-4)2≥0∴(m-4)2+10,即(m-4)2+1≠0∴不论m取何值,该方程都是一元二次方程。五、归纳小结(学生总结,老师点评)本节课要掌握:(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用。六、布置作业1.教材p34习题1、2.2.选用作业设计。《一元二次方程》的优秀教案【第二篇】一、教学目标知识与技能(1)理解一元二次方程的意义。好文供参考!6/14(2)能熟练地把一元二次方程整理成一般形式并能指出它的二次项系数,一次项系数及常数项。过程与方法在分析、揭示实际问题的数量关系并把实际问题转化成数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。情感、态度与价值观通过探索建立一元二次方程模型的过程,使学生积极参与数学学习活动,增进对方程的认识,发展分析问题、解决问题的能力。二、教材分析:教学重点难点重点:经历建立一元二次方程模型的过程,掌握一元二次方程的一般形式。难点:准确理解一元二次方程的意义。三、教学方法创设情境——主体探究——合作交流——应用提高四、学案(1)预学检测3x-5=0是什么方程?一元一次方程的定义是怎样的?其一般形式是怎样的?五、教学过程好文供参考!7/14(一)创设情境、导入新(1)自学本P2—P3并完成书本(2)请学生分别回答书本内容再(二)主体探究、合作交流(1)观察下列方程:(35-2x)2=9004x2-9=03y2-5y=7它们有什么共同点?它们分别含有几个未知数?它们的左边分别是未知数的几次几项式?(2)一元二次方程的概念与一般形式?如果一个方程通过移项可以使右边为0,而左边是只含一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是ax2+bx+c=0(a、b、c是已知数a≠0),其中,a、b、c分别称为二次项系数、一次项系数和常数项,如x2-x=56(三)应用迁移、巩固提高例1:根据一元二次方程定义,判断下列方程是否为一元二次方程?为什么?x2-x=13x(x-1)=5(x+2)x2=(x-1)2例2:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项。解:去括号得3x2-3x=5x+10移项,合并同类项,得一元二次方程的一般形式好文供参考!8/143x2-8x-10=0其中二次项系数为3,一次项系数为-8,常数项为-10.学生练习:书本P4练习(四)总结反思拓展升华总结1、一元二次方程的定义是怎样的?2、一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。3、在实际问题转化为一元二次方程数学模型的过程中,体会学习一元二次方程的必要性和重要性。反思方程ax3+bx2+cx+d=0是关于x的一元二次方程的条是a=0且b≠0,是一元一次方程的条是a=b=0且c≠0.(五)布置作业(1)必做题P4习题组(2)选做题:若xm-2=9是关于x的一元二次方程,试求代数式(m2-5m+6)÷(m2-2m)的值。数学《一元二次方程》教案设计【第三篇】教学内容:用公式解一元二次方程(一)教学目标:好文供参考!9/14知识与技能目标:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.过程与方法目标:1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.情感与态度目标:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.,数学教案-用公式法解一元二次方程。教学重、难点与关键:重点:一元二次方程的意义及一般形式.难点:正确识别一般式中的“项”及“系数”。教辅工具:教学程序设计:程序教师活动学生活动备注创设问题情景1.用电脑演示下面的操作:一块长方形的薄钢片,在薄好文供参考!10/14钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.学生看投影并思考问题通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.探究好文供参考!11/14新知11.复习提问(1)什么叫做方程?曾学过哪些方程?(2)什么叫做一元一次方程?“元”和“次”的含义?(3)什么叫做分式方程?2.引例:剪一块面积为150cm2的长方形铁片使它的长比宽多5cm,这块铁片应怎样剪?引导,启发学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,得到整式方程和一元二次方程的概念.整式方程:方程的两边都是关于未知数的整式,这样的方程称为整式方程.一元二次方程:只含有一个未知数,且未知数的最高次数是2,这样的整式方程叫做一元二次方程.3.练习:指出下列方程,哪些是一元二次方程?(1)x(5x-2)=x(x+1)+4x2;(2)7x2+6=2x(3x+1);元二次方程的相关教案【第四篇】教学目的好文供参考!12/141.了解整式方程和一元二次方程的概念;2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。教学难点和难点:重点:1.一元二次方程的有关概念2.会把一元二次方程化成一般形式难点:一元二次方程的含义。教学过程设计一、引入新课引例:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?分析:1.要解决这个问题,就要求出铁片的长和宽。2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。3.让学生自己列出方程(x(x十5)=150)深入引导:方程x(x十5)=150有人会解吗?你能叫出这个方程的名字吗?好文供参考!13/14二、新课1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来。事实上初中代数研究的主要对象是方程。这部分内容从初一一直贯穿到初三。到目前为止我们对方程研究的还很不够,从今天起我们就开始研究这样一类方程--------一元一二次方程(板书课题)2.什么是—元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的。最高次数是几。如果方程未知数的最高次数是2、这样的整式方程叫做一元二次方