参考资料,少熬夜!垂直【实用4篇】【导读指引】三一刀客最漂亮的网友为您整理分享的“垂直【实用4篇】”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!垂直【第一篇】教学目标:1、使学生能够熟练掌握垂径定理及两个推论;2、使学生能够运用垂径定理及两个推论进行有关的证明和计算。3、通过例4的教学使学生了解垂径定理在实际问题中的应用,进一步提高学生用数学的意识;教学重点:垂径定理及推论的应用。教学难点:实际问题转化为数学问题。教学过程:一、新课引入:这节课的主要内容是应用题例4,例4是一个实际问题,它反映了数学与生产实际的联系,它要求学生用数学的理论、思想、方法建立实际问题的数学模型,以解决实际问题。这对进一步培养学生分析问题和解决问题有很大的帮助。本节课就是引导学生把例4的实际问题转化成一个数学问题,然后综合运用垂径定理、勾股定理来加以解决。为了进一步理解运用垂径定理解决实际问题,教师有目的地安排两组复习题,启发学生进行回答。复习提问:1.垂径定理内容是什么?2.判断题:①垂直于弦的直线平分这条弦,并且平分弦所对的两条弧;()②弦的垂直平分线一定平分这条弦所对的弧;()③经过弦中点的直径一定垂直于弦;()④圆的两条弦所夹的弧相等,则这两条弦一定平行;()⑤平分弦所对的一条弧的直径一定垂直平分这条弦。()学生回答的对错,由学生之间评价,从而得到正确答案。其目的就是为了强化所学过的垂径定理及推论1、推论2,为本节课做准备工作。二、新课讲解:例41300多年前,我国隋代建造的赵州石拱桥的桥拱是圆弧形,它的跨度(弧所对的弦的长)为米,拱高(弧中点到弦的距离,也叫弓形的高)为米,求桥拱的半径(精确到米).同学们,请看图7-18上这座石桥,这座桥就是例4中的古代的赵州石拱桥,学生一边观察桥的结构,教师一边讲解:“赵州桥又名安济桥,位于河北省赵县城南洨河上,是我国现存的著名古代大石桥,是隋代开皇大业年间(590~608)李春创建。桥为单孔,全长米,桥面宽约10米,跨径约为33米,拱圈矢高约7米,弧形平缓,拱圈由28条并列的石条组成,上设四个小拱,既减轻重量,又节省材料,又便于排水,且增美观,在世界桥梁史上,其设计与工艺之新为石拱桥的卓越典范,跨度之大在当时亦属创举,这反映了我国古代劳动人民的智慧与才能。现在这座桥为全国重点文物保护单位。”教师一席话一方面向学生进行爱祖国的教育;另一方面激发学生的学习动机,点燃学生的思维火花,激起学生思维的热情,使学生的思维处于最佳状态。教师为了让学生了解赵州石拱桥的背景,激发学生的求知欲望,当学生对这座桥产生好奇时,教师启发参考资料,少熬夜!学生:“我们如何来求出这座桥的半径呢”?接着教师分析:“我们知道这是一座石拱桥,我们可以把桥拱抽成一个几何图形,就是一个圆弧形”。这时教师画出图7-19.对于一个实际问题求半径的长,能否转化成一个数学问题来解决呢?这就需要首先分析已知什么条件和欲求的未知是什么?师生共同分析解题思路。教师板书:解:圆表示桥拱,设的圆心为o,半径为r米。经过圆心o作弦ab的垂线od,d为垂足,与相交于足c,根据垂径定理,d是的中点,c是ab的中点,cd就是拱高。由题设ab=,cd=,od=oc-dc=在rt△oad中,由勾股定理,得oa2=ad2+od2,即r2=+()2解这个方程,得r≈(米).答:赵州石拱桥的半径约为米。在例4的处理上,教师采取一边画图,一边分析,一边板书。目的让学生掌握关于求弦、半径、弦心距及弓形高等问题,属于典型的数形结合问题,对于解决这种典型的问题就是依据已知和未知设法构造直角三角形,通过这个直角三角形就能把垂径定理和勾股定理有机地结合起来,就能很快地把未知转化为已知。从而所求问题得以解决。巩固练习:中1题。在直径为650mm的圆柱形油槽内装入一些油后,截面如图所示,若油面宽ab=60mm,求油的最大深度。对于这道题主要由学生分析,教师适当点拨。分析:要求油的最大深度,就是求有油弓形的高,弓形的高是半径与圆心o到弦的距离差,从而不难看出它与半径和弦的一半可以构造直角三角形,然后利用垂径定理和勾股定理来解决。总结解题思路:巩固练习:教材中2题(略).三、课堂小结:本节课主要要求学生综合运用垂径定理和勾股定理解决圆中线段的长等问题。如图在⊙o中,设⊙o半径为r,弦ab=a,弦心距od=d,弓形的高de=h.且oe⊥ab于d.已知:①r、d,求a、h.②r、h,求a、d.③r、a,求d、h.④d、h,求r、a.………对于在⊙o中在r,a,d,h中,只要已知两个量就可求出另外的两个量。所应用的知识点是勾股定理和垂径定理。本节课主要解题思路:四、布置作业:教材中15、16题。教材中4题(b组)垂直【第二篇】教学目标:1、使学生通过观察实验理解圆的轴对称性;2、掌握垂径定理,理解垂径定理的推证过程;3、能初步应用垂径定理进行计算和证明。4、进一步培养学生观察问题、分析问题和解决问题的能力。教学重点:垂径定理及应用。教学难点:垂径定理的证明。教学过程:一、新课引入:请同学们回答下列问题:1、如果一个图形沿着一条直线折叠,直线的两旁的部分能够互相重合,那么这个图形叫做________;那么这条直线叫做________.2、等腰三角形是轴对称图形吗?3、“圆”是不是轴对称图形?它的对称轴是什么?教师利用提问1.,2.的形式,复习轴对称图形的概念。提问3.的目的是引出本节课的第一个知识点。在学生回答后,引导学生观察电脑演示将圆对折的情形。教师讲解将圆沿着一条直径对折,你参考资料,少熬夜!观察到了什么情况?这时学生回答,教师板书。圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。接着电脑继续演示,教师讲解:由图7-9(1)中cd为⊙o的直径;变到图7-9(2)中在⊙o上任意取一点a;再变到图7-9(3)从点a作直径cd的垂线交⊙o于另一个交点b.这时我们可以看出图(3)中的点b与点a是否是对称点呢?a、b是关于什么对称。教师进一步提出当直径cd垂直于弦ab,将能得到什么结论呢?这就是本节学习的内容。“垂直于弦的直径(一)”。教师这样引入课题的目的,使学生从认识上初步完成实验——观察——感性——理性的认识过程。逐步学会从实践中引入、从现象中抽象、从事实中概括,从而激发学生的学习动机。二、新课讲解:为了使学生进一步通过实验的观察,很快地概括出本课的教学内容,由图7-9(1)可知cd所在直线是⊙o的对称轴;到图7-9(2)从⊙o上取一点a,过点a作直径cd的垂线交⊙o于点b,得到图7-9(3),这时沿着cd折叠,引导学生观察重合部分,学生纷纷猜想结论。通过实验——观察——猜想获得感性认识。这个实验结论是否正确,还需要证明。学生带着一种好奇心,积极主动参与到证明这个结论中去。学生回答证明过程,教师板书。已知:在⊙o中,cd是直径,ab是弦,cd⊥ab,垂足为e.求证:ae=eb,=,=.证明:连结oa,ob,则oa=ob.又cd⊥ab,∴直线cd是等腰△oab的对称轴,又是△o的对称轴。所以沿着直径cd折叠时,cd两侧的两个半圆重合,a点和b点重合,ae和be重合,、分别和、重合。因此,ae=be,=,=.从而得到圆的一条重要性质。垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条垂径定理是由演示实验——观察——感性——理性的全过程。为了使学生能够真正理解垂径定理,引导学生分析垂径定理的题设和结论,加深对定理的认识并强化用数学表达式表示出来:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。〈2〉〈1〉〈3〉〈4〉〈5〉把直径化分为(1);把垂直于弦化分为(2);把平分弦化为(3);平分优弧化为(4);平分劣弧化分为(5).为了运用的方便,不易出现错误,将原定理叙述为:(1)过圆心;(2)垂直于弦;(3)平分弦;(4)平分弦所对的优弧;(5)平分弦所对的劣弧。这样做目的是加深对定理的理解,突出重点,分散难点,避免学生记混。接着为了巩固垂径定理,引导学生完成下面两道题。例1如图7-10,已知在⊙o中,弦ab的长为8cm,圆心o到ab的距离为3cm,求⊙o的半径。教师分析:要求⊙o的半径,连结oa,只要求出oa的长就可以了,因为已知条件点o到ab的距离为3cm,所以作oe⊥ab于e,学生回答,教师板书计算过程。解:连结oa,作oe⊥ab,垂足为e.∵oe⊥ab,∴ae=eb.∵ab=8cm,∴ae=4cm.参考资料,少熬夜!又∵oe=3cm,在rt△aoe中,∵⊙o的半径为5cm.教师强调:从例1可以知道作“弦心距”是很重要的一条辅助线,弦心距的作用就是平分弦,平分弦所对的弧,它和直径一样。求圆的半径问题,要和弦心距,弦的一半和半径构造出一个直角三角形,和勾股定理联系起来。例2已知:如图7-11,在以o为圆心的两个同心圆中,大圆的弦ab交小圆于c、d两点。求证ac=bd.例2由学生分析证明思路,学生板书证明过程。师生共同参与评价。练习1:教材中1题。练习2:教材中2题。练习1,2两道题教师把题打在幻灯片上,由学生上黑板分析思路,学生之间展开评价。这样做给学生充分的表现机会,不是老师牵着学生走,而是学生通过积极思维主动获得知识。最后找两名同学上黑板写出证明过程,其它同学在练习本上完成。每小组派一名学生辅导有问题的学生,使不同层次的学生共同提高。三、课堂小结:小结由学生完成,教师进一步强调。1.本节课学习的知识点(1)圆的轴对称性;(2)垂径定理及应用。2.方法上主要学习了(1)垂径定理和勾股定理有机结合计算弦长、半径、弦心距等问题的方法,构造直角三角形。(2)在圆中解决与弦有关问题经常作的辅助线——弦心距。(3)为了更好理解垂径定理,一条直线只要满足(1)过圆心;(2)垂直于弦;则可得(3)平分弦;(4)平分弦所对的优弧;(5)平分弦所对的劣弧。四、布置作业教材中11、12、13垂直【第三篇】基础练习1、填空(1)两条直线相交成()时,这两条直线叫做互相垂直。(2)从直线外一点到在这条直线做画的垂线段的长度叫做这点到直线的()。(3)两条直线互相垂直,通常都有一个小小的标志符号,是()。2、下面的图形哪两条线是相互垂直?的请打“”4、判断(1)两条直线相交,这两条直线就一定相互垂直。()(2)长方形相邻的两条边相互垂直。()(3)垂直和相交可以用一个符号来表示。()拓展练习6、竞赛是否公平?直线ag与bh是运动场两侧相互平行的两条直线,体育老师在这两条直线之间画了四条垂线,甲、乙、丙、丁、四名同学分别沿着这四条垂线跑,有的同学却说沿着中间的垂线怕的队员怕的路程短,同学们想一想,竞赛是否公平?垂直【第四篇】参考资料,少熬夜!教学目标(一)使学生理解和掌握、互相、垂线等概念。(二)初步学会画垂线的方法。(三)培养学生初步画图的能力。教学重点和难点使学生理解和掌握、垂线、距离等概念是教学重点;学生画垂线是学习的难点。教学过程设计(一)复习准备1.指出下面图形中的直线、射线和线段。2.量出各角的度数,并说出各是什么角。(二)学习新课我们今天要在学过直线和角的知识基础上学习一种新的概念:.(板书课题:)1.认识垂线。(1)理解的含义。①教师演示:用两条颜色不同的毛线表示两条直线,使它们相交。提问:两条直线相交成几个角?(4个角)标出∠1,∠2,∠3,∠4.这4个角分别是什么角?(∠1,∠3是锐角;∠2,∠4是钝角。)②转动其中一条直线,使其中一个角变为直角。提问:其余三个角是什么角?想一想,为什么其他的角也变成了直角?引导学生明确,把一条直线分成两个角,∠1是直角,∠2也会变成直角,180°-90°=90°,同样∠3=90°,得出四个角都是直角。两条直线相交成直角时,这两条直线叫做互相。(板书)③观察下面几组图形,看哪组两条直线相交成直角?哪两条直线是互相的?引导学生观察并测量得知:图(2)、图(3)两条直线相交成直角,图(2)、图(3)两条直线是互相的。(2)建立垂线的概念。师指出:上图中的(2)、(3)是两条直线互相的,其中一条直线叫做另一条直线的垂线,这两条