好文供参考!1/9百分数的知识点总结实用3篇【引读】这篇优秀的文档“百分数的知识点总结实用3篇”由网友上传分享,供您参考学习使用,希望此文对您有所帮助,喜欢的话就分享给下载吧!百分数的知识点总结1分数和百分数的应用1、分数加减法应用题:分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。2、分数乘法应用题:是指已知一个数,求它的几分之几是多少的应用题。特征:已知单位1的量和分率,求与分率所对应的实际数量。解题关键:准确判断单位1的量。找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。3、分数除法应用题:求一个数是另一个数的几分之几(或百分之几)是多少。特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。一个数是比较量,另一个数是标准量。求好文供参考!2/9分率或百分率,也就是求他们的倍数关系。解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了单位一,谁和单位一的量作比较,谁就作被除数。甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。关系式(甲数减乙数)/乙数或(甲数减乙数)/甲数。已知一个数的几分之几(或百分之几),求这个数。特征:已知一个实际数量和它相对应的分率,求单位1的量。解题关键:准确判断单位1的量把单位1的量看成x根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际数量。4、出勤率发芽率=发芽种子数/试验种子数100%小麦的出粉率=面粉的重量/小麦的重量100%产品的合格率=合格的产品数/产品总数100%职工的出勤率=实际出勤人数/应出勤人数100%5、工程问题:是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相好文供参考!3/9互关系的一种应用题。解题关键:把工作总量看作单位1,工作效率就是工作时间的倒数,然后根据题目的`具体情况,灵活运用公式。数量关系式:工作总量=工作效率工作时间工作效率=工作总量工作时间工作时间=工作总量工作效率工作总量工作效率和=合作时间6、纳税纳税就是把根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。缴纳的税款叫应纳税款。应纳税额与各种收入的(销售额、营业额、应纳税所得额)的比率叫做税率。*利息存入银行的钱叫做本金。取款时银行多支付的钱叫做利息。利息与本金的比值叫做利率。利息=本金利率时间百分数的知识点总结2分数与百分数的应用好文供参考!4/9基本概念与性质:分数:把单位“1”平均分成几份,表示这样的一份或几份的数。分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。分数单位:把单位“1”平均分成几份,表示这样一份的数。百分数:表示一个数是另一个数百分之几的数。常用方法:①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。②对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。③转化思维方法:把一类应用题转化成另一类应用题进行解答。最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。常见的处理方法是确定不同的标准为一倍量。④假设思维方法:为了解题的方便,可以把题目中不相等的`量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。好文供参考!5/9有以下三种情况:A、分量发生变化,总量不变。B、总量发生变化,但其中有的分量不变。C、总量和分量都发生变化,但分量之间的差量不变化。⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。⑧浓度配比法:一般应用于总量和分量都发生变化的状况。百分数的知识点总结31、意义:表示一个数是另一个数的百分之几。(千分数:表示一个数是另一个数的千分之几)2、百分数和分数的区别:①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。②、百分数的分子可以是整数,也可以是小数;分数的分子不能是小数,只能是除0以外的自然数。3、百分数与小数的互化:(1)小数化成百分数:把小数点向右移动两位,同时在好文供参考!6/9后面添上百分号。(2)百分数化成小数:把小数点向左移动两位,同时去掉百分号4、百分数的和分数的互化(1)百分数化成分数:先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分(2)分数化成百分数:①用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。5、用百分数解决问题(一)一般应用题2、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题:数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”:单位“1”的量×分率=分率对应量10的10%是多少(2)分率前是“多或少”:单位“1”的量×(1+—分率)=分率对应量比10多(少)10%3、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。好文供参考!7/9解法:(建议:最好用方程解答)(1)方程:根据数量关系式设未知量为X,用方程解答。(2)算术(用除法):分率对应量÷对应分率=单位“1”的量4、求一个数比另一个数多(少)百分之几的问题:两个数的相差量÷单位“1”的量×100%或:求多百分之几:(大数÷小数–1)×100%②求少百分之几:(1-小数÷大数)×100%(二)、折扣1、折扣:商品按原定价格的。百分之几出售,叫做折扣。通称“打折”。几折就表示十分之几,也就是百分之几十。例如八折==80﹪,六折五==65﹪2、一成是十分之一,也就是10%。三成五就是十分之三点五,也就是35%(三)、纳税1、纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。2、纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。3、应纳税额:缴纳的税款叫做应纳税额。好文供参考!8/94、税率:应纳税额与各种收入的比率叫做税率。5、应纳税额的计算方法:应纳税额=总收入×税率(四)利息1、存款分为活期、整存整取和零存整取等方法。2、储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。3、本金:存入银行的钱叫做本金。4、利息:取款时银行多支付的钱叫做利息。5、利率:利息与本金的比值叫做利率。6、利息的计算公式:利息=本金×利率×时间7、注意:如要上利息税(国债和教育储藏的利息不纳税),则:税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)①甲是50,乙是40,甲是乙的百分之几?(50是40的百分之几?)50÷40=125%②甲是50,乙是40,乙是甲的百分之几?(40是50的百分之几?)40÷50=80%③乙是40,甲是乙的125%,甲数是多少?(40的125%是多少?)40×125%=50④甲是50,乙是甲的80%,乙数是多少?(50的80%是好文供参考!9/9多少?)50×80%=40⑤乙是40,乙是甲的80%,甲数是多少?(一个数的80%是40,这个数是多少?)40÷80%=50⑥甲是50,甲是乙的125%,乙数是多少?(一个数的125%是50,这个数是多少?)50÷125%=40⑦甲是50,乙是40,甲比乙多百分之几?(50比40多百分之几?)(50-40)÷40×100%=25%⑧甲是50,乙是40,乙比甲少百分之几?(40比50少百分之几?)(50-40)÷50×100%=20%⑨甲比乙多25%,多10,乙是多少?10÷25%=40⑩甲比乙多25%,多10,甲是多少?10÷25%+10=50乙比甲少20%,少10,甲是多少?10÷20%=50乙比甲少20%,少10,乙是多少?10÷20%-10=40乙是40,甲比乙多25%,甲数是多少?(什么数比40多25%?)40×(1+25%)=50甲是50,乙比甲少20%,乙数是多少?(什么数比50多25%?)50×(1-20%)=40乙是40,比甲少20%,甲数是多少?(40比什么数少20%?)40÷(1-20%)=50甲是50,比乙多25%,乙数是多少?(50比什么数多25%?)40÷(1+25%)=40