2023初一数学上册知识点总结归纳精选多篇关于2023初一数学上册知识点总结归纳10哪些初一上册数学知识点能够真正帮助到我们呢?在我们平凡无奇的学生时代,是不是经常追着老师要知识点?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。下面是网友给大家分享的“2023初一数学上册知识点总结归纳精选多篇”,仅供参考希望能帮助到大家。2023初一数学上册知识点总结归纳【第一篇】(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类:①整数②分数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数0和正整数;a0a是正数;aa≥0a是正数或0a是非负数;a≤0?a是负数或0a是非正数.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数0,小数-大数2023初一数学上册知识点总结归纳【第二篇】1、我们把实物中抽象的各种图形统称为几何图形(geometricfigure).2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形(solidfigure).3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形(planefigure).4、将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图(net).5、几何体简称为体(solid).6、包围着体的是面(surface),面有平的面和曲的面两种.7、面与面相交的地方形成线(line),线和线相交的地方是点(point).8、点动成面,面动成线,线动成体.9、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线.简述为:两点确定一条直线(公理).10、当两条不同的直线有一个公共点时,我们就称这两条直线相交(intersection),这个公共点叫做它们的交点(pointofintersection).11、点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点(center).12、经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短.简单说成:两点之间,线段最短.(公理)13、连接两点间的线段的长度,叫做这两点的距离(distance).14、角∠(angle)也是一种基本的几何图形.15、把一个周角360等分,每一份就是1度(degree)的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″.16、从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线(angularbisector).17、如果两个角的和等于90°(直角),就是说这两个叫互为余角(complementaryangle),即其中的每一个角是另一个角的余角.18、如果两个角的和等于180°(平角),就说这两个角互为补角(supplementaryangle),即其中一个角是另一个角的补角19、等角的补角相等,等角的余角相等.2023初一数学上册知识点总结归纳【第三篇】一、方程的有关概念1.方程:含有未知数的等式就叫做方程.2.一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程.⑵方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.二、等式的性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.四、去括号法则1.括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.2.括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.五、解方程的一般步骤1.去分母(方程两边同乘各分母的最小公倍数)2.去括号(按去括号法则和分配律)3.移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4.合并(把方程化成ax=b(a≠0)形式)5.系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=a(b).六、用方程思想解决实际问题的一般步骤1.审:审题,分析题中已知什么,求什么,明确各数量之间的关系.2.设:设未知数(可分直接设法,间接设法)3.列:根据题意列方程.4.解:解出所列方程.5.检:检验所求的解是否符合题意.6.答:写出答案(有单位要注明答案)2023初一数学上册知识点总结归纳【第四篇】正数和负数⒈、正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,—a是负数;当a表示负数时,—a是正数;当a表示0时,—a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,—a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。2、具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:—8℃3、0表示的意义(1)0表示“没有”,如教室里有0个人,就是说教室里没有人;(2)0是正数和负数的分界线,0既不是正数,也不是负数。如:(3)0表示一个确切的量。如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。有理数1、有理数的概念(1)正整数、0、负整数统称为整数(0和正整数统称为自然数)(2)正分数和负分数统称为分数(3)正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。③整数也能化成分数,也是有理数注意:引入负数以后,奇数和偶数的范围也扩大了,像—2,—4,—6,—8也是偶数,—1,—3,—5也是奇数。2023初一数学上册知识点总结归纳【第五篇】(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类:①整数②分数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数0和正整数;a0a是正数;a0a是负数;a≥0a是正数或0a是非负数;a≤0?a是负数或0a是非正数.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数0,小数-大数0.