弹性力学课件

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第一节平面应力问题和平面应变问题第二节平衡微分方程第三节平面问题中一点的应力状态第四节几何方程刚体位移第五节物理方程第六节边界条件第二章平面应力问题和平面应变问题第七节圣维南原理及其应用第八节按位移求解平面问题第九节按应力求解平面问题相容方程第十节常应力情况下的简化应力函数第二章平面应力问题和平面应变问题弹性力学平面问题共有应力、应变和位移8个未知函数,且均为。§2-1平面应力问题和平面应变问题弹性力学空间问题共有应力、应变和位移15个未知函数,且均为;zyxf,,yxf,平面应力第二章平面应力问题和平面应变问题(4)约束作用于板边,平行于板的中面,沿板厚不变。(3)面力作用于板边,平行于板的中面,沿板厚不变;(2)体力作用于体内,平行于板的中面,沿板厚不变;条件是:第一种:平面应力问题平面应力(1)等厚度的薄板;第二章平面应力问题和平面应变问题坐标系如图选择。平面应力第二章平面应力问题和平面应变问题简化为平面应力问题:故只有平面应力存在。0,,2δzzyzxzττσ(在V中),0,,zyzxzττσ由于薄板很薄,应力是连续变化的,又无z向外力,可认为:平面应力(1)两板面上无面力和约束作用,故xyyxσσ,,第二章平面应力问题和平面应变问题所以归纳为平面应力问题:a.应力中只有平面应力存在;b.且仅为。yxf,平面应力xyyxσσ,,(2)由于板为等厚度,外力、约束沿z向不变,故应力仅为。yxf,xyyxσσ,,第二章平面应力问题和平面应变问题如:弧形闸门闸墩计算简图:平面应力深梁计算简图:Fyfyf第二章平面应力问题和平面应变问题因表面无任何面力,0,0yxff即:.0,,zyzxzσ平面应力.0,,zyzxzσAB例题1:试分析AB薄层中的应力状态。故接近平面应力问题。故表面上,有:在近表面很薄一层内:第二章平面应力问题和平面应变问题(2)体力作用于体内,平行于横截面,沿柱体长度方向不变;平面应变第二种:平面应变问题条件是:(1)很长的常截面柱体;(3)面力作用于柱面,平行于横截面,沿柱体长度方向不变;(4)约束作用于柱面,平行于横截面,沿柱体长度方向不变。第二章平面应力问题和平面应变问题坐标系选择如图:平面应变oxzyozxy对称面zy第二章平面应力问题和平面应变问题故任何z面(截面)均为对称面。(平面位移问题)只有;,0u,vw(平面应变问题)只有.,,,0,0,,00xyyxzyzxzyzxzττεw平面应变(1)截面、外力、约束沿z向不变,外力、约束平行xy面,柱体非常长;简化为平面应变问题:第二章平面应力问题和平面应变问题(2)由于截面形状、体力、面力及约束沿向均不变,故应力、应变和位移均为。yxf,z平面应变第二章平面应力问题和平面应变问题所以归纳为平面应变问题:a.应变中只有平面应变分量存在;b.且仅为。平面应变yxf,xyyxγεε,,第二章平面应力问题和平面应变问题例如:平面应变隧道挡土墙oyxyox第二章平面应力问题和平面应变问题且仅为。故只有,本题中:0,,0zyzxz平面应变yxf,xyyxγεε,,oxyz例题2:试分析薄板中的应变状态。故为平面应变问题。.0,zyzx第二章平面应力问题和平面应变问题§2-2平衡微分方程定义平衡微分方程--表示物体内任一点的微分体的平衡条件。第二章平面应力问题和平面应变问题在任一点(x,y)取出一微小的平行六面体,作用于微分体上的力:体力:。1ddyxyxff,定义应力:作用于各边上,并表示出正面上由坐标增量引起的应力增量。第二章平面应力问题和平面应变问题应用的基本假定:连续性假定─应力用连续函数来表示。小变形假定─用变形前的尺寸代替变形后的尺寸。第二章平面应力问题和平面应变问题列出平衡条件:合力=应力×面积,体力×体积;以正向物理量来表示。平面问题中可列出3个平衡条件。平衡条件第二章平面应力问题和平面应变问题其中一阶微量抵消,并除以得:.01dd1d1)dd(1d1)dd(,0yxfxxyyyσyxxσσFxyxyxyxxxxxyxdd0.(a)yxxxσfxy0yF0.(b)yxyyσfyx,同理可得:平衡条件第二章平面应力问题和平面应变问题,0cM当时,得切应力互等定理,得,d21d21yyxxyxyxxyxy0d,dyx.(c)xyyx平衡条件第二章平面应力问题和平面应变问题⑵适用的条件--连续性,小变形;xy说明对平衡微分方程的说明:⑴代表A中所有点的平衡条件,因位(,)∈A;⑶应力不能直接求出;⑷对两类平面问题的方程相同。第二章平面应力问题和平面应变问题理论力学考虑整体的平衡(只决定整体的运动状态)。VVVd说明⑸比较:材料力学考虑有限体的平衡(近似)。弹性力学考虑微分体的平衡(精确)。第二章平面应力问题和平面应变问题当均平衡时,保证,平衡;反之则不然。VV说明Vd所以弹力的平衡条件是严格的,并且是精确的。第二章平面应力问题和平面应变问题理力(V)材力()弹力()bxhVd1dddyxVhVdxdydx第二章平面应力问题和平面应变问题思考题1.试检查,同一方程中的各项,其量纲必然相同(可用来检验方程的正确性)。2.将条件,改为对某一角点的,将得出什么结果?3.微分体边上的应力若考虑为不均匀分布,将得出什么结果?0cM0M第二章平面应力问题和平面应变问题已知坐标面上应力,求斜面上的应力。问题的提出:§2-3平面问题中一点的应力状态问题xyyxσσ,,第二章平面应力问题和平面应变问题求解:取出一个三角形微分体(包含面,面,面),边长).,(),,(nnyxσppppn.,,mdsPAldsPBdsAB问题xy斜面应力表示:第二章平面应力问题和平面应变问题由平衡条件,并略去高阶分量体力项,得(1)求(,)(a)xpyp,,xyyyyxxxlτmσpmτlσp斜面应力其中:l=cos(n,x),m=cos(n,y)。第二章平面应力问题和平面应变问题(2)求()将向法向,切向投影,得nnτσ,),(yxppp22222,(b)()().nxyxyxynyxyxxyσlpmplσmσlmlpmplmσσlm斜面应力第二章平面应力问题和平面应变问题设某一斜面为主面,则只有由此建立方程,求出:,0,nnτσσ(3)求主应力斜面应力.tan,222112221xyxyyxyxσσσσ(c)第二章平面应力问题和平面应变问题将x,y放在方向,列出任一斜面上应力公式,可以得出(设)21,σσ21σσ.45,2,2121的斜面上应力成发生在与主σσσσσnmaxminnmaxmin(4)求最大,最小应力最大,最小应力说明:以上均应用弹力符号规定导出。(d)第二章平面应力问题和平面应变问题几何方程─表示任一点的微分线段上形变与位移之间的关系。§2-4几何方程刚体位移定义第二章平面应力问题和平面应变问题变形前位置:变形后位置:--各点的位置如图。通过点P(x,y)作两正坐标向的微分线段,,dyPBdxPA,,,PAB定义,,PAB第二章平面应力问题和平面应变问题32sin,3!cos11,2!tan.应用基本假定:⑴连续性;⑵小变形。当很小时,假定第二章平面应力问题和平面应变问题().xuudxuuxdxx.yvy假定由位移求形变:PA线应变PA转角PB线应变PB转角同理,tan.vdxvxdxxyu第二章平面应力问题和平面应变问题⑴适用于区域内任何点,因为(x,y)A;对几何方程的说明:.,,yuxvyvxuxyyx所以平面问题的几何方程为:说明⑶适用条件:a.连续性;b.小变形。⑵应用小变形假定,略去了高阶小量线性的几何方程;第二章平面应力问题和平面应变问题⑷几何方程是变形后物体连续性条件的反映和必然结果。⑸形变和位移之间的关系:位移确定形变完全确定:从物理概念看,各点的位置确定,则微分线段上的形变确定。说明从数学推导看,位移函数确定,则其导数(形变)确定。第二章平面应力问题和平面应变问题从物理概念看,,确定,物体还可作刚体位移。从数学推导看,,确定,求位移是积分运算,出现待定函数。形变确定,位移不完全确定:形变与位移的关系第二章平面应力问题和平面应变问题由,两边对y积分,由,两边对x积分,例:若,求位移:0xyyx0,(a)xyvuxy形变与位移的关系0xxu0yyv).(0),(1yfyxu).(0),(2xfyxv代入第三式第二章平面应力问题和平面应变问题分开变量,12d()d()().(b)ddfyfxyx因为几何方程第三式对任意的(x,y)均应满足。当x(y)变化时,式(b)的左,右均应=常数,由此解出。可得形变与位移的关系21,ff,.(c)oouuyvvx第二章平面应力问题和平面应变问题物理意义:00,vu形变与位移的关系--表示物体绕原点的刚体转动。--表示x,y向的刚体平移,第二章平面应力问题和平面应变问题结论形变确定,则与形变有关的位移可以确定,而与形变无关的刚体位移则未定。--须通过边界上的约束条件来确定。,,oovu,,oovu第二章平面应力问题和平面应变问题思考题,,,cbaxyyx当应变为常量时,试求出对应的位移分量。第二章平面应力问题和平面应变问题物理方程--表示(微分体上)应力和形变之间的物理关系。11(),,11(),,11(),.xxyzyzyzyyzxzxzxzzxyxyxyσσσEGσσσEGσσσEG定义即为广义胡克定律:§2-5物理方程第二章平面应力问题和平面应变问题物理方程的说明:说明⑷正应力只与线应变有关;切应力只与切应变有关。⑶是线性的代数方程;⑵是总结实验规律得出的;⑴适用条件─理想弹性体;第二章平面应力问题和平面应变问题物理方程的两种形式:--应变用应力表示,用于按应力求解;--应力用应变(再用位移表示)表示,用于按位移求解。)(σfε)(εfσ说明第二章平面应力问题和平面应变问题平面应力问题的物理方程:代入,得:在z方向0zyzxzσ11(),(),(a)2(1).xxyyyxxyxyσσσσEEE).(,0yxzzσσEεσ平面应力第二章平面应力问题和平面应变问题代入得,0zyzxz221(),11(),(b)12(1).xxyyyxxyxyEEE平面应变问题的物理方程平面应变在z方向,).(,0yxzz第二章平面应力问题和平面应变问题平面应力物理方程→平面应变物理方程:.1,12EE变换关系:.1,)1()21(2EE平面应变物理方程→平面应力物理方程:第二章平面应力问题和平面应变问题思考题1.试证:由主应力可以求出主应变,且两者方向一致。2.试证:3个主应力均为压应力,有时可以产生拉裂现象。3.试证:在自重作用下,圆环(平面应力问题)比圆筒(平面应变问题)的变形大。第二章平面应力问题和平面应变问题位移边界条件--设在部分边界上给定位移分量和,则有),()(),()(svvsuuss(在上)。(a)usus定义)(su)(sv边界条件--表示在边界上位移与约束,或应力与面力之间的关系。位移边界条件§2-6边界条件第

1 / 164
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功