抽象函数解题方法与技巧

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1抽象函数解题方法与技巧函数的周期性:1、定义在x∈R上的函数y=f(x),满足f(x+a)=f(x-a)(或f(x-2a)=f(x))(a0)恒成立,则y=f(x)是周期为2a的周期函数;2、若y=f(x)的图像关于直线x=a和x=b对称,则函数y=f(x)是周期为2|a-b|的周期函数;3、若y=f(x)的图像关于点(a,0)和(b,0)对称,则函数y=f(x)是周期为2|a-b|的周期函数;4、若y=f(x)的图像有一个对称中心A(a,0)和一条对称轴x=b(a≠b),则函数y=f(x)是周期为4|a-b|的周期函数;5、若函数y=f(x)满足f(a+x)=f(a-x),其中a0,且如果y=f(x)为奇函数,则其周期为4a;如果y=f(x)为偶函数,则其周期为2a;6、定义在x∈R上的函数y=f(x),满足f(x+a)=-f(x)1()fxafx或1()fxafx或,则y=f(x)是周期为2|a|的周期函数;7、若11fxfxafx在x∈R恒成立,其中a0,则y=f(x)是周期为4a的周期函数;8、若11fxfxafx在x∈R恒成立,其中a0,则y=f(x)是周期为2a的周期函数。(7、8应掌握具体推导方法,如7)函数图像的对称性:1、若函数y=f(x)满足f(a+x)=f(b-x),则函数y=f(x)的图像关于直线2abx对称;2、若函数y=f(x)满足f(x)=f(2a-x)或f(x+a)=f(a-x),则函数y=f(x)的图像关于直线x=a对称;3、若函数y=f(x)满足f(a+x)+f(b-x)=c,则y=f(x)的图像关于点,22abc成中心对称图形;4、曲线f(x,y)=0关于点(a,b)的对称曲线的方程为f(2a-x,2b-y)=0;5、形如0,axbycadbccxd的图像是双曲线,由常数分离法dadadaxbbacccyddccxcxcc知:对称中心是点,dacc;6、设函数y=f(x)定义在实数集上,则y=f(x+a)与y=f(b-x)的图像关于直线2bax对称;7、若函数y=f(x)有反函数,则y=f(a+x)和y=f-1(x+a)的图像关于直线y=x+a对称。一、换元法换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法.例1.已知f(1+sinx)=2+sinx+cos2x,求f(x)1111212112()()11fxfxafxfxafxfxafxfxfx2二、方程组法运用方程组通过消参、消元的途径也可以解决有关抽象函数的问题。例2..232|)(:|,)1(2)(),)(,(xfxxfxfxfxf(x)y求证且为实数即是实数函数设三、待定系数法如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题。例3.已知f(x)是二次函数,且f(x+1)+f(x-1)=2x2-4x,求f(x).四、赋值法有些抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决。例4.对任意实数x,y,均满足f(x+y2)=f(x)+2[f(y)]2且f(1)≠0,则f(2001)=_______.例5.已知f(x)是定义在R上的不恒为零的函数,且对于任意的实数a,b都满足f(ab)=af(b)+bf(a).(1)求f(0),f(1)的值;(2)判断f(x)的奇偶性,并证明你的结论;五、转化法通过变量代换等数学手段将抽象函数具有的性质与函数的单调性等定义式建立联系,为问题的解决带来极大的方便.例6.设函数f(x)对任意实数x,y,都有f(x+y)=f(x)+f(y),若x0时f(x)0,且f(1)=-2,求f(x)在[-3,3]上的最大值和最小值。例7.定义在R+上的函数f(x)满足:①对任意实数m,f(xm)=mf(x);②f(2)=1.(1)求证:f(xy)=f(x)+f(y)对任意正数x,y都成立;(2)证明f(x)是R+上的单调增函数;(3)若f(x)+f(x-3)≤2,求x的取值范围。六、递推法对于定义在正整数集N*上的抽象函数,用递推法来探究,如果给出的关系式具有递推性,也常用递推法来求解.例8.已知f(x)是定义在R上的函数,f(1)=1,且对任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1。若g(x)=f(x)+1-x,则g(2002)=_________.3模型法模型法是指通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性质来指导我们解决抽象函数问题的方法。应掌握下面常见的特殊模型:特殊模型抽象函数正比例函数f(x)=kx(k≠0)f(x+y)=f(x)+f(y)幂函数f(x)=xnf(xy)=f(x)f(y)fxxfyfy或指数函数f(x)=ax(a0且a≠1)f(x+y)=f(x)f(y)fxfxyfy或对数函数f(x)=logax(a0且a≠1)f(xy)=f(x)+f(y)xffxfyy或正、余弦函数f(x)=sinxf(x)=cosxf(x+T)=f(x)正切函数f(x)=tanx()()()1()()fxfyfxyfxfy余切函数f(x)=cotx1()()()()()fxfyfxyfxfy例10.已知实数集上的函数f(x)恒满足f(2+x)=f(2-x),方程f(x)=0有5个实根,则这5个根之和=_____________例11.设定义在R上的函数f(x),满足当x0时,f(x)1,且对任意x,y∈R,有f(x+y)=f(x)f(y),f(1)=2(1)解不等式f(3x-x2)4;(2)解方程[f(x)]2+12f(x+3)=f(2)+1例12.已知函数f(x)对任何正数x,y都有f(xy)=f(x)f(y),且f(x)≠0,当x1时,f(x)1。试判断f(x)在(0,+∞)上的单调性,并说明理由。函数性质练习1.已知函数为偶函数,则的值是()A.B.C.D.2.若偶函数在上是增函数,则下列关系式中成立的是())127()2()1()(22mmxmxmxfm1234)(xf1,4A.B.C.D.3.如果奇函数在区间上是增函数且最大值为,那么在区间上是()A.增函数且最小值是B.增函数且最大值是C.减函数且最大值是D.减函数且最小值是4.设是定义在上的一个函数,则函数在上一定是()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数5.下列函数中,在区间上是增函数的是()A.B.C.D.6.函数是()A.是奇函数又是减函数B.是奇函数但不是减函数C.是减函数但不是奇函数D.不是奇函数也不是减函数7.设奇函数的定义域为,若当时,的图象如右图,则不等式的解是8.函数的值域是________________.9.已知,则函数的值域是.10.若函数是偶函数,则的递减区间是.11.下列四个命题(1)有意义;(2)函数是其定义域到值域的映射;(3)函数的图象是一直线;(4)函数的图象是抛物线,其中正确的命题个数是____________.12.已知函数的定义域为,且同时满足下列条件:(1)是奇函数;(2)在定义域上单调递减;(3)求的取值范围.)2()1()23(fff)2()23()1(fff)23()1()2(fff)1()23()2(fff)(xf[3,7]5)(xf3,75555)(xfR)()()(xfxfxFR0,1xyxy3xy142xy)11()(xxxxf)(xf5,5[0,5]x)(xf()0fx21yxx[0,1]x21yxx2()(2)(1)3fxkxkx)(xf()21fxxx2()yxxN22,0,0xxyxx()fx1,1()fx()fx2(1)(1)0,fafaa5抽象函数解题方法与技巧函数的周期性:1、定义在x∈R上的函数y=f(x),满足f(x+a)=f(x-a)(或f(x-2a)=f(x))(a0)恒成立,则y=f(x)是周期为2a的周期函数;2、若y=f(x)的图像关于直线x=a和x=b对称,则函数y=f(x)是周期为2|a-b|的周期函数;3、若y=f(x)的图像关于点(a,0)和(b,0)对称,则函数y=f(x)是周期为2|a-b|的周期函数;4、若y=f(x)的图像有一个对称中心A(a,0)和一条对称轴x=b(a≠b),则函数y=f(x)是周期为4|a-b|的周期函数;5、若函数y=f(x)满足f(a+x)=f(a-x),其中a0,且如果y=f(x)为奇函数,则其周期为4a;如果y=f(x)为偶函数,则其周期为2a;6、定义在x∈R上的函数y=f(x),满足f(x+a)=-f(x)1()fxafx或1()fxafx或,则y=f(x)是周期为2|a|的周期函数;7、若11fxfxafx在x∈R恒成立,其中a0,则y=f(x)是周期为4a的周期函数;8、若11fxfxafx在x∈R恒成立,其中a0,则y=f(x)是周期为2a的周期函数。(7、8应掌握具体推导方法,如7)函数图像的对称性:1、若函数y=f(x)满足f(a+x)=f(b-x),则函数y=f(x)的图像关于直线2abx对称;2、若函数y=f(x)满足f(x)=f(2a-x)或f(x+a)=f(a-x),则函数y=f(x)的图像关于直线x=a对称;3、若函数y=f(x)满足f(a+x)+f(b-x)=c,则y=f(x)的图像关于点,22abc成中心对称图形;4、曲线f(x,y)=0关于点(a,b)的对称曲线的方程为f(2a-x,2b-y)=0;5、形如0,axbycadbccxd的图像是双曲线,由常数分离法dadadaxbbacccyddccxcxcc知:对称中心是点,dacc;6、设函数y=f(x)定义在实数集上,则y=f(x+a)与y=f(b-x)的图像关于直线2bax对称;7、若函数y=f(x)有反函数,则y=f(a+x)和y=f-1(x+a)的图像关于直线y=x+a对称。二、换元法换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法.例2.已知f(1+sinx)=2+sinx+cos2x,求f(x)解:令u=1+sinx,则sinx=u-1(0≤u≤2),则f(u)=-u2+3u+1(0≤u≤2)故f(x)=-x2+3x+1(0≤x≤2)二、方程组法运用方程组通过消参、消元的途径也可以解决有关抽象函数的问题。1111212112()()11fxfxafxfxafxfxafxfxfx6例2..232|)(:|,)1(2)(),)(,(xfxxfxfxfxf(x)y求证且为实数即是实数函数设解:xxxfxxfxfxx323)(,1)(2)1(,1联立方程组,得得代换用322323|)(|xxxf三、待定系数法如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题。例3.已知f(x)是多项式函数,且f(x+1)+f(x-1)=2x2-4x,求f(x).解:由已知得f(x)是二次多项式,设f(x)=ax2+bx+c(a≠0)代入f(x+1)=a(x+1)2+b(x+1)+c=ax2+(2a+b)

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功