株洲市2020年初中学业水平考试数学试卷一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题4分,共40分)1.a的相反数为-3,则a等于()A.-3B.3C.3D.13【答案】B【解析】【分析】根据相反数的定义解答即可.【详解】解:因为3的相反数是﹣3,所以a=3.故选:B.【点睛】本题考查了相反数的定义,属于应知应会题型,熟知概念是关键.2.下列运算正确的是()A.34aaaB.22aaC.527aaD.22(3)6bb【答案】A【解析】【分析】根据同底数幂的乘法法则、合并同类项法则、幂的乘方的运算法则及积的乘方的运算法则依次计算各项后即可解答.【详解】选项A,根据同底数幂的乘法法则可得34aaa,选项A正确;选项B,根据合并同类项法则可得2aaa,选项B错误;选项C,根据幂的乘方的运算法则可得5210aa,选项C错误;选项D,根据积的乘方的运算法则可得22(3)9bb,选项D错误.故选A.【点睛】本题考查了同底数幂的乘法法则、合并同类项法则、幂的乘方的运算法则及积的乘方的运算法则,熟练运用相关法则是解决问题的关键.3.一个不透明的盒子中装有4个形状、大小质地完全相同的小球,这些小球上分别标有数字-1、0、2和3.从中随机地摸取一个小球,则这个小球所标数字是正数的概率为()A.14B.13C.12D.34【答案】C【解析】【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.【详解】解:根据题意可得:4个小球中,其中标有2,3是正数,故从中随机地摸取一个小球,则这个小球所标数字是正数的概率为:2142.故选:C.【点睛】本题考查了概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率mPAn.4.一实验室检测A、B、C、D四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是()A.B.C.D.【答案】D【解析】【分析】分别求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.【详解】∵|+1.2|=1.2,|-2.3|=2.3,|+0.9|=0.9,|-0.8|=0.8,0.8<0.9<1.2<2.3,∴从轻重的角度看,最接近标准的是选项D中的元件,故选D.【点睛】本题考查了绝对值以及正数和负数的应用,掌握正数和负数的概念和绝对值的性质是解题的关键,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.5.数据12、15、18、17、10、19的中位数为()A.14B.15C.16D.17【答案】C【解析】【分析】首先将这组数据按大小顺序排列,再利用中位数定义,即可求出这组数据的中位数.【详解】解:把这组数据从小到大排列为:10,12,15,17,18,19,则这组数据的中位数是15172=16.故选:C.【点睛】此题考查了中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.6.下列哪个数是不等式2(1)30x的一个解?()A.-3B.12C.13D.2【答案】A【解析】【分析】首先求出不等式的解集,然后判断哪个数在其解集范围之内即可.【详解】解:解不等式2(1)30x,得21x因为只有-312,所以只有-3是不等式2(1)30x的一个解故选:A【点睛】此题考查不等式解集的意义,是一道基础题.理解不等式的解集的意义是解题的关键.7.在平面直角坐标系中,点(,2)Aa在第二象限内,则a的取值可以..是()A.1B.32C.43D.4或-4【答案】B【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数即可判断.【详解】解:∵点(,2)Aa是第二象限内的点,∴0a,四个选项中符合题意的数是32,故选:B【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8.下列不等式错误..的是()A.21B.17C.5102D.10.33【答案】C【解析】【分析】选项A,根据两个负数绝对值大的反而小即可得21;选项B,由3π4,4175即可得17;选项C,由256.252,6.2510,可得5102;选项D,由10.33可得10.33.由此可得只有选项C错误.【详解】选项A,根据两个负数绝对值大的反而小可得21,选项A正确;选项B,由3π4,4175可得17,选项B正确;选项C,由256.252,6.2510,可得5102,选项C错误;选项D,由10.33可得10.33,选项D正确.故选C.【点睛】本题考查了实数的大小比较及无理数的估算,熟练运用实数大小的比较方法及无理数的估算方法是解决问题的关键.9.如图所示,点A、B、C对应的刻度分别为0、2、4、将线段CA绕点C按顺时针方向旋转,当点A首次落在矩形BCDE的边BE上时,记为点1A,则此时线段CA扫过的图形的面积为()A.4B.6C.43D.83【答案】D【解析】【分析】求线段CA扫过的图形的面积,即求扇形ACA1的面积.【详解】解:由题意,知AC=4,BC=4-2=2,∠A1BC=90°.由旋转的性质,得A1C=AC=4.在Rt△A1BC中,cos∠ACA1=1BCAC=12.∴∠ACA1=60°.∴扇形ACA1的面积为2460360=83.即线段CA扫过的图形的面积为83.故选:D【点睛】此题考查了扇形面积的计算和解直角三角形,熟练掌握扇形面积公式是解本题的关键.10.二次函数2yaxbxc,若0ab,20ab,点11,Axy,22,Bxy在该二次函数的图象上,其中12xx,120xx,则()A.12yyB.12yyC.12yyD.1y、2y的大小无法确定【答案】B【解析】【分析】首先分析出a,b,x1的取值范围,然后用含有代数式表示y1,y2,再作差法比较y1,y2的大小.【详解】解:∵20ab,b20,∴a0.又∵0ab,∴b0.∵12xx,120xx,∴21xx,x10.∵点11,Axy,22,Bxy在该二次函数2yaxbxc的图象上∴2111yaxbxc,2222211yaxbxcaxbxc.∴y1-y2=2bx10.∴y1y2.故选:B.【点睛】此题主要考查了二次函数的性质,二次函数图象上点的坐标特征和函数值的大小比较,判断出字母系数的取值范围是解题的关键.二、填空题(本题共8小题,每小题4分,共32分)11.关于x的方程38xx的解为x________.【答案】4【解析】【分析】方程移项、合并同类项、把x系数化为1,即可求出解.【详解】解:方程38xx,移项,得3x-x=8,合并同类项,得2x=8.解得x=4.故答案为:x=4.【点睛】方程移项,把x系数化为1,即可求出解.12.因式分解:2212aa________.【答案】2(6)aa【解析】【分析】运用提公因式法分解因式即可.【详解】解:221226aaaa.故答案为:2(6)aa【点睛】本题考查了提公因式法分解因式,准确确定公因式是解题关键.13.计算2(82)3的结果是________.【答案】2【解析】【分析】利用二次根式的乘除法则运算.【详解】解:原式=228233=282233=4233=2.故答案是:2.【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.14.王老师对本班40个学生所穿校服尺码的数据统计如下:尺码SMLXLXXLXXL频率0.050.10.20.3250.30.025则该班学生所穿校服尺码为“L”的人数有________个.【答案】8【解析】【分析】直接用尺码L的频率乘以班级总人数即可求出答案.【详解】解:由表可知尺码L的频率的0.2,又因为班级总人数为40,所以该班学生所穿校服尺码为“L”的人数有400.2=8.故答案是:8.【点睛】此题主要考查了频数与频率,关键是掌握频数是指每个对象出现的次数.频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数÷总数.15.一个蜘蛛网如图所示,若多边形ABCDEFGHI为正九边形,其中心点为点O,点M、N分别在射线OA、OC上,则MON________度.【答案】80【解析】【分析】根据正多边形性质求出中心角,即可求出MON.【详解】解:根据正多边形性质得,中心角为360°÷9=40°,∴2=80MONABC.故答案为:80【点睛】本题考查了正n边形中心角的定义,在正多边形中,中心角为360n.16.如图所示,点D、E分别是ABC的边AB、AC的中点,连接BE,过点C做//CFBE,交DE的延长线于点F,若3EF,则DE的长为________.【答案】32【解析】【分析】先证明DE为ABC的中位线,得到四边形BCFE为平行四边形,求出BC=EF=3,根据中位线定理即可求解.【详解】解:∵D、E分别是ABC的边AB、AC的中点,∴DE为ABC的中位线,∴DE∥BC,12DEBC,∵//CFBE,∴四边形BCFE为平行四边形,∴BC=EF=3,∴1322DEBC.故答案为:32【点睛】本题考查了三角形中位线定理,平行四边形判定与性质,熟知三角形中位线定理是解题关键.17.如图所示,在平面直角坐标系Oxy中,四边形OABC为矩形,点A、C分别在x轴、y轴上,点B在函数1kyx(0x,k为常数且2k)的图象上,边AB与函数22(0)yxx的图象交于点D,则阴影部分ODBC的面积为________(结果用含k的式子表示)【答案】1k【解析】【分析】根据反比例函数k的几何意义可知:△AOD的面积为1,矩形ABCO的面积为k,从而可以求出阴影部分ODBC的面积.【详解】解:∵D是反比例函数22(0)yxx图象上一点∴根据反比例函数k的几何意义可知:△AOD的面积为122=1.∵点B在函数1kyx(0x,k为常数且2k)的图象上,四边形OABC为矩形,∴根据反比例函数k的几何意义可知:矩形ABCO的面积为k.∴阴影部分ODBC的面积=矩形ABCO的面积-△AOD的面积=k-1.故答案为:k-1.【点睛】本题考查反比例函数k的几何意义,解题的关键是正确理解k的几何意义,本题属于中等题型.18.据《汉书律历志》记载:“量者,龠(yuè)、合、升、斗、斛(hú)也”斛是中国古代的一种量器,“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是说:“斛的底面为:正方形的外接一个圆,此圆外是一个同心圆”,如图所示.问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的周长为________尺.(结果用最简根式表示)【答案】42【解析】【分析】根据正方形性质确定△CDE为等腰直角三角形,CE为直径,根据题意求出正方形外接圆的直径CE,求出CD,问题得解.【详解】解:∵四边形CDEF为正方形,∴∠D=90°,CD=DE,∴CE为直径,ECD=45°,由题意得AB=2.5,∴CE=2.5-0.25×2=2,∴CD=CE2cosECD=2=22,∴ECD=45°,∴正方形CDEF周长为42尺.故答案为:42【点睛】本题考查了正方形外接圆的性质,等腰直角三角形性质,解题关键是判断出正方形对角线为其外接圆直径.三、解答题(本大题共8小题,共78分