第1页共2页类比归纳专题:二次根式求值的常用方法——明确计算便捷渠道◆类型一利用二次根式的非负性求值1.若a,b为实数,且|a+1|+b-1=0,则(ab)2018的值是()A.0B.1C.-1D.±12.已知a+1+b2-2b+1=0,则a2018+b2017的值是________.3.若a2-3a+1+b2-2b+1=0,则a2+1a2-|b|=________.4.若y=x-3+3-x+2,求xy的值.【方法1②】◆类型二利用乘法公式进行计算5.计算:(1)(5+3)2;(2)(25-2)2;(3)(3+2)2-(3-2)2.6.已知x+1x=5,求x2x4+x2+1的值.第2页共2页◆类型三整体代入求值7.已知x=2-10,则代数式x2-4x-6的值为()A.-1B.0C.1D.28.(2017·安顺中考)已知x+y=3,xy=6,则x2y+xy2的值为________.9.已知x=1-2,y=1+2,求x2+y2-xy-2x+2y的值.10.已知x=13-22,y=13+22,求xy+yx-4的值.参考答案与解析:1.B2.23.6解析:∵a2-3a+1+b2-2b+1=0,∴a2-3a+1+(b-1)2=0,∴a2-3a+1=0,b=1,∴a-3+1a=0,∴a+1a=3,∴a+1a2=32,∴a2+1a2=7.∴a2+1a2-|b|=6.4.解:由题意有x-3≥0,3-x≥0,∴x=3,∴y=2,∴xy=32=9.5.解:(1)原式=8+215.(2)原式=22-410.(3)原式=46.6.解:原式取倒数得x4+x2+1x2=x2+1x2+1=x+1x2-1=(5)2-1=4.∴原式=14.7.B8.329.解:∵x=1-2,y=1+2,∴x-y=(1-2)-(1+2)=-22,xy=(1-2)(1+2)=-1.∴x2+y2-xy-2x+2y=(x-y)2-2(x-y)+xy=(-22)2-2×(-22)+(-1)=7+42.方法点拨:根据原式以及字母取值的特点,将原式配方、整合成含有x-y和xy的形式,利用整体思想代入求值.10.解:由已知得x=3+22,y=3-22.∴x+y=6,xy=1,∴原式=x2+y2xy-4=(x+y)2-6xyxy=62-6×1=30.