矩形一、选择题(每小题4分,共12分)1.(2013·包头中考)如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1,S2,则S1,S2的大小关系是()A.S1S2B.S1=S2C.S1S2D.3S1=2S22.(2013·南充中考)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B'处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12B.24C.12D.163.如图,∠MON=90°,矩形ABCD的顶点A,B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为()A.+1B.C.D.二、填空题(每小题4分,共12分)4.(2013·北京中考)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为.5.(2013·漳州中考)如图,在Rt△ABC中,∠ACB=90°,点D是斜边AB的中点,DE⊥AC,垂足为E,若DE=2,CD=2,则BE的长为.6.如图,四边形ABCD是矩形,点E在线段CB的延长线上,连接DE交AB于点F,∠AED=2∠CED,点G是DF的中点,若BE=1,AG=4,则AB的长为.三、解答题(共26分)7.(8分)(2013·湘西中考)如图,在矩形ABCD中,E,F分别是边AB,CD的中点,连接AF,CE.(1)求证:△BEC≌△DFA.(2)求证:四边形AECF是平行四边形.8.(8分)已知:如图,矩形ABCD中,AC,BD相交于点O,AE平分∠BAD,若∠EAO=15°,求∠BOE的度数.【拓展延伸】9.(10分)阅读以下短文,然后解决下列问题:[来源:学。科。网Z。X。X。K]如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,则称这样的矩形为三角形的“友好矩形”.如图①所示,矩形ABEF即为△ABC的“友好矩形”.显然,当△ABC是钝角三角形时,其“友好矩形”只有一个.(1)仿照以上叙述,说明什么是一个三角形的“友好平行四边形”.(2)如图②,若△ABC为直角三角形,且∠C=90°,在图②中画出△ABC的所有“友好矩形”,并比较这些矩形面积的大小.(3)若△ABC是锐角三角形,且BCACAB,在图③中画出△ABC的所有“友好矩形”,指出其中周长最小的矩形并加以证明.答案解析1.【解析】选B.矩形ABCD的面积S1=2S△ABC,而S△ABC=S2,所以S1=S2.2.【解析】选D.由两直线平行,内错角相等,知∠DEF=∠EFB=60°,∴∠AEF=∠A'EF=120°,∴∠A'EB'=60°,A'E=AE=2,求得A'B'=2,∴AB=2,矩形ABCD的面积为S=2×8=16.【归纳整合】解决矩形中折叠问题的两个思路(1)运用矩形的对边相等、对角线相等、四个角是直角等性质.(2)运用轴对称的性质,找出折叠前后相等的角、线段.3.【解析】选A.取AB的中点E,连接OE,DE,OD,则OE=AB=1,AE=1,∴DE=,当D,E,O三点共线时,OD=OE+DE,否则ODOE+DE,∴OD长的最大值是+1.4.【解析】由勾股定理得AC=13,∵BO为直角三角形斜边上的中线,∴BO=6.5,由三角形中位线定理得MO=2.5,∴四边形ABOM的周长为:6.5+2.5+6+5=20.[来源:学.科.网]答案:205.【解析】∵∠ACB=90°,点D是斜边AB的中点,DE⊥AC,∴BC=2DE=4.[来源:Z+xx+k.Com]∴AB=2CD=4,∴AC===8.∴CE=AC=4,∴BE===4.答案:46.【解析】∵四边形ABCD是矩形,∴AD∥BC.∴∠CED=∠ADE.∵四边形ABCD是矩形,∴∠BAD=90°.∵点G是DF的中点,∴AG=DF=DG.∴∠AGE=2∠ADE=2∠CED.又∵∠AED=2∠CED,∴∠AGE=∠AED,∴AE=AG=4.在Rt△ABE中AB===.答案:7.【证明】(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC.又∵E,F分别是边AB,CD的中点,∴BE=DF,∵在△BEC和△DFA中,∴△BEC≌△DFA(SAS).(2)由(1)得,CE=AF,又CF=AE,故可得四边形AECF是平行四边形.8.【解析】∵AD∥BC,∴∠DAE=∠AEB.∵AE平分∠DAB,∴∠DAE=∠BAE.∴∠BAE=∠AEB,∴AB=BE.∵∠BAD=90°,∠BAE=∠EAD,∴∠BAE=45°.∵∠EAO=15°,∴∠BAO=45°+15°=60°.∵OA=OB,∴△AOB是等边三角形,∴BO=AB.∵AB=BE,∴BO=BE,∴∠BOE=∠BEO.∵∠ABE=90°,∠ABO=60°,∴∠OBE=30°.在△BOE中,∵∠BOE+∠BEO+∠OBE=180°,∴∠BOE=(180°-∠OBE)=75°.9.【解析】(1)如果一个三角形和一个平行四边形满足条件:三角形的一边与平行四边形的一边重合,三角形这边所对的顶点在平行四边形这边的对边上,则称这样的平行四边形为三角形的“友好平行四边形”.(2)此时共有2个“友好矩形”,如图,矩形BCAD,矩形ABEF.易知,矩形BCAD,矩形ABEF的面积都等于△ABC面积的2倍,∴△ABC的“友好矩形”的面积相等.(3)此时共有3个“友好矩形”,如图中矩形BCDE,矩形CAFG及矩形ABHK,其中矩形ABHK的周长最小.[来源:学&科&网Z&X&X&K][来源:学科网]证明如下:易知,这三个矩形的面积相等,令其为S.设矩形BCDE,矩形CAFG及矩形ABHK的周长分别为L1,L2,L3,△ABC的边长BC=a,CA=b,AB=c,则L1=+2a,L2=+2b,L3=+2c.∴L1-L2=-=2(a-b)×,而abS,ab,∴L1-L20,即L1L2.同理可得,L2L3,∴L3最小,即矩形ABHK的周长最小.