第1页共4页第十七章勾股定理周周测4一选择题1.下列各组数中不能作为直角三角形的三边长的是()A.6,8,10B.5,12,13C.1,2,3D.9,12,152.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是()3.三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形4.若△ABC的三边a.b.c,满足(a-b)(a2+b2-c2)=0,则△ABC是()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形5.下列说法中,不正确的是()A.三个角的度数之比为1:3:4的三角形是直角三角形B.三个角的度数之比为3:4:5的三角形是直角三角形C.三边长度之比为3:4:5的三角形是直角三角形D.三边长度之比为5:12:13的三角形是直角三角形6.有长度为9cm,12cm,15cm,36cm,39cm的五根木棒,可搭成(首尾连接)直角三角形的个数为()A.1个B.2个C.3个D.4个7.有下列判断:①△ABC中,,则△ABC不是直角三角形;②若△ABC是直角三角形,,则;③若△ABC中,,则△ABC是直角三角形;④若△ABC是直角三角形,则(,正确的有()A.4个B.3个C.2个D.1个8.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴于点M,则点M表示的数为()第2页共4页A.2B.C.D.第8题图第9题图9.如图,有一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,则这块地的面积为()A.24平方米B.26平方米C.28平方米D.30平方米10.在下列条件中:①在△ABC中,∠A:∠B:∠C=1:2:3;②三角形三边长分别为32,42,52;③在△ABC中,三边a,b,c满足(a+b)(a-b)=c2;④三角形三边长分别为m-1,2m,m+1(m为大于1的整数),能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个二填空题11.在△ABC中,如果(a+b)(a﹣b)=c2,那么∠=90°.12.若三角形三边分别为6,8,10,那么它最长边上的中线长是.13.某住宅小区有一块草坪如图所示,已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,这块草坪的面积是.14.若一个三角形的三边长分别为1.a.8(其中a为正整数),则以a-2,a,a+2为边的三角形面积为.15.在△ABC中,若其三条边的长度分别为9,12,15,则以两个这样的三角形所拼成的长方形的面积是________.16.如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒,连接DE,当△BDE是直角三角形时,t的值.三解答题第3页共4页17.如图,一块地,已知AD=4m,CD=3m,∠ADC=90°,AB=13m,BC=12m.求这块地的面积.18.如图,已知∠ADC=90°,AD=8,CD=6,AB=26,BC=24.(1)证明:△ABC是直角三角形.(2)请求图中阴影部分的面积.19.如图,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D.E,F为BC中点,BE与DF,DC分别交于点G,H,∠ABE=∠CBE.(1)求证:BH=AC;(2)求证:BG2-GE2=EA2.20.已知a.b.c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4,①∴c2(a2﹣b2)=(a2+b2)(a2﹣b2).②∴c2=a2+b2.③∴△ABC是直角三角形.问:(1)在上述解题过程中,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为;(3)写出正确的解题过程.第4页共4页第十七章勾股定理周周测4试题答案1.C2.C3.C4.C5.B6.B7.C8.C9.A10.B11.A12.513.3614.24提示:7<a<9,∴a=8.15.10816.2,6,3.5,4.5解析:∵∠ACB=90°,∠ABC=60°,BC=2cm,∴AB=BC÷cos60°=2÷=4.①∠BDE=90°时,∵D为BC的中点,∴DE是△ABC的中位线,∴AE=AB=×4=2(cm),点E在AB上时,t=2÷1=2(秒),点E在BA上时,点E运动的路程为4×2-2=6(cm),∴t=6÷1=6(秒);②∠BED=90°时,BE=BD•cos60°=×2×=0.5.点E在AB上时,t=(4-0.5)÷1=3.5(秒),点E在BA上时,点E运动的路程为4+0.5=4.5(cm),t=4.5÷1=4.5(秒),综上所述,t的值为2或6或3.5或4.5.17.2418.(1)证明:∵在Rt△ADC中,∠ADC=90°,AD=8,CD=6,∴AC2=AD2+CD2=82+62=100,∴AC=10.在△ABC中,∵AC2+BC2=102+242=676,AB2=262=676,∴AC2+BC2=AB2,∴△ABC为直角三角形.(2)解:S阴影=SRt△ABC﹣SRt△ACD=×10×24﹣×8×6=96.19.证明:(1)∵CD⊥AB,BE⊥AC,∴∠BDH=∠BEC=∠CDA=90°,∵∠ABC=45°,∴∠BCD=180°-90°-45°=45°=∠ABC∴DB=DC.∵∠BDH=∠BEC=∠CDA=90°,∴∠A+∠ACD=90°,∠A+∠HBD=90°,∴∠HBD=∠ACD.∵在△DBH和△DCA中,∠BDH=∠CDA,BD=CD,∠HBD=∠ACD,∴△DBH≌△DCA(ASA),∴BH=AC.(2)连接CG,由(1)知DB=CD.∵F为BC的中点,∴DF垂直平分BC,∴BG=CG.∵点E为AC中点,BE⊥AC,∴EC=EA.在Rt△CGE中,由勾股定理得CG2-GE2=CE2.∵CE=AE,BG=CG,∴BG2-GE2=EA2.20.解:(1)③(2)除式可能为零;(3)∵a2c2﹣b2c2=a4﹣b4,∴c2(a2﹣b2)=(a2+b2)(a2﹣b2),∴a2﹣b2=0或c2=a2+b2,当a2﹣b2=0时,a=b;当c2=a2+b2时,∠C=90°,∴△ABC是等腰三角形或直角三角形.