轻绳、轻杆模型

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1轻绳、轻杆模型例:质量为m的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为v,当小球以2v的速度经过最高点时,对轨道的压力是()A.0B.mgC.3mgD5mg分析:内侧轨道只能对小球产生向下的压力,其作用效果同轻绳一样,所以其本质是轻绳模型当小球经过最高点的临界速度为v,则当小球以2v的速度经过最高点时,轨道对小球产生了一个向下的压力N,则因为所以根据牛顿第三定律,小球对轨道压力的大小也是,故选c.例:半径为R=0.5m的管状轨道,有一质量为m=3kg的小球在管状轨道内部做圆周运动,通过最高点时小球的速率是2m/s,g=10m/s2,则()A.外轨道受到24N的压力B.外轨道受到6N的压力C.内轨道受到24N的压力D.内轨道受到6N的压力分析:管状轨道对小球既有支持力又有压力,所以其本质属于杆模型:当小球到最高点轨道对其作用力为零时:有则,=2m/s所以,内轨道对小球有向上的支持力,则有2代入数值得:N=6N根据牛顿第三定律,小球对内轨道有向下的压力大小也为6N,故选D例1(07年全国2)如图所示,位于竖直平面内的光滑有轨道,由一段斜的直轨道与之相切的圆形轨道连接而成,圆形轨道的半径为R。一质量为m的小物块从斜轨道上某处由静止开始下滑,然后沿圆形轨道运动。要求物块能通过圆形轨道最高点,且在该最高点与轨道间的压力不能超过5mg(g为重力加速度)。求物块初始位置相对于圆形轨道底部的高度h的取值范围。解:设物块在圆形轨道最高点的速度为v,由机械能守恒定律得mgh=2mgR+mv2①物块在最高点受的力为重力mg、轨道的压力N。重力与压力的合力提供向心力,有mg+N=m②物块能通过最高点的条件是N≥0③由②③式得V≥④3由①④式得H≥2.5R⑤按题的需求,N=5mg,由②式得V<⑥由①⑥式得h≤5R⑦h的取值范围是2.5R≤h≤5R例2如图所示光滑管形圆轨道半径为R(管径远小于R)固定,小球a、b大小相同,质量相同,均为m,其直径略小于管径,能在管中无摩擦运动.两球先后以相同速度v通过轨道最低点,且当小球a在最低点时,小球b在最高点,以下说法正确的是()A.速度v至少为,才能使两球在管内做圆周运动B.当v=时,小球b在轨道最高点对轨道无压力C.当小球b在最高点对轨道无压力时,小球a比小球b所需向心力大5mgD.只要v≥,小球a对轨道最低点压力比小球b对轨道最高点压力都大6mg4解:内管可以对小球提供支持力,可化为轻杆模型,在最高点时,小球速度可以为零,由机械能守恒知得,所以A错,得,此时即重力刚好能提供向心力,小球对轨道无压力。最低点时的向心力为5mg,向心力相差4倍,B对,C错,最高点,最低点由机械能守恒有,所以,D对。5

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功