第1页共21页2015-2016学年山东省滨州市九年级(上)月考数学试卷(12月份)一、选择题(每题3分计36分)1.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.2.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k>﹣1且k≠0C.k<1D.k<1且k≠03.抛物线图象如图所示,根据图象,抛物线的解析式可能是()A.y=x2﹣2x+3B.y=﹣x2﹣2x+3C.y=﹣x2+2x+3D.y=﹣x2+2x﹣34.已知⊙O过正方形ABCD顶点A,B,且与CD相切,若正方形边长为2,则圆的半径为()A.B.C.D.15.一只小鸟自由自在地在空中飞行,然后随意落在图中所示的某个方格中(每个方格除颜色外完全一样),那么小鸟停在黑色方格中的概率是()第2页共21页A.B.C.D.6.已知反比例函数的图象经过点(a,b),则它的图象一定也经过()A.(﹣a,﹣b)B.(a,﹣b)C.(﹣a,b)D.(0,0)7.已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.8.在同一直角坐标系中,函数y=kx﹣k与y=(k≠0)的图象大致是()A.B.C.D.9.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=5m,点P到CD的距离是3m,则点P到AB的距离是()A.mB.C.D.10.若M(,y1)、N(,y2)、P(,y3)三点都在函数(k>0)的图象上,则y1、y2、y3的大小关系是()A.y2>y3>y1B.y2>y1>y3C.y3>y1>y2D.y3>y2>y111.如图,E是平行四边形ABCD的边BA延长线上的一点,CE交AD于点F,下列各式中错误的是()第3页共21页A.B.C.D.12.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,则sinB的值是()A.B.C.D.二、填空题(每题4分计24分)13.反比例函数y=(k是常数,k≠0)的图象经过点(a,﹣a),那么该图象一定经过第象限.14.一个反比例函数y=(k≠0)的图象经过点P(﹣2,﹣1),则该反比例函数的解析式是.15.某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为米.第4页共21页16.如图,P是反比例函数图象在第二象限上的一点,且长方形PEOF的面积为8,则反比例函数的表达式是.17.如图,D,E分别是△ABC的边AB,AC上的点,请你添加一个条件,使△ABC与△AED相似,你添加的条件是.18.如图,已知△ABC∽△DBE,AB=6,DB=8,则=.三、解答题:19.先化简,再求代数式的值:,其中a=tan60°﹣2sin30°.20.如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A、B两点.(1)根据图象,分别写出A、B的坐标;(2)求出两函数解析式;(3)根据图象回答:当x为何值时,一次函数的函数值大于反比例函数的函数值.第5页共21页21.已知如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足是D,BC=,DB=1,求CD,AD的长.22.某中学组织部分优秀学生分别去北京、上海、天津、重庆四个城市进行夏令营活动,学校购买了前往四个城市的车票,如图是未制作完整的车票种类和数量的条形统计图,请你根据统计图回答下列问题:(1)若前往天津的车票占全部车票的30%,则前往天津的车票数是多少张?并请补全统计图.(2)若学校采取随机抽取的方式分发车票,每人抽取一张(所有的车票的形状、大小、质地完全相同),那么张明抽到前往上海的车票的概率是多少?23.已知:,试判断直线y=kx+k一定经过哪些象限,并说明理由.24.已知:CP为圆O切线,AB为圆的割线,CP、AB交于P,求证:AP•BP=CP2.第6页共21页25.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.第7页共21页2015-2016学年山东省滨州市九年级(上)月考数学试卷(12月份)参考答案与试题解析一、选择题(每题3分计36分)1.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:(A)、是轴对称图形,不是中心对称图形,故本选项错误;(B)、是轴对称图形,也是中心对称图形,故本选项正确;(C)、不是轴对称图形,是中心对称图形,故本选项错误;(D)、不是轴对称图形,是中心对称图形,故本选项错误.故选B.【点评】此题考查了轴对称及中心对称图形的判断,解答本题的关键是掌握中心对称图形与轴对称图形的概念,属于基础题.2.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k>﹣1且k≠0C.k<1D.k<1且k≠0【考点】根的判别式;一元二次方程的定义.【分析】根据根的判别式及一元二次方程的定义得出关于k的不等式组,求出k的取值范围即可.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴,即,解得k>﹣1且k≠0.故选B.【点评】本题考查的是根的判别式,熟知一元二次方程的根与判别式的关系是解答此题的关键.3.抛物线图象如图所示,根据图象,抛物线的解析式可能是()A.y=x2﹣2x+3B.y=﹣x2﹣2x+3C.y=﹣x2+2x+3D.y=﹣x2+2x﹣3第8页共21页【考点】二次函数的图象.【专题】压轴题.【分析】抛物线开口向下,a<0,与y轴的正半轴相交c>0,对称轴在原点的右侧a、b异号,则b>0,再选答案.【解答】解:由图象得:a<0,b>0,c>0.故选C.【点评】此类题可用数形结合的思想进行解答,这也是速解习题常用的方法.4.已知⊙O过正方形ABCD顶点A,B,且与CD相切,若正方形边长为2,则圆的半径为()A.B.C.D.1【考点】切线的性质;正方形的性质.【分析】作OM⊥AB于点M,连接OB,在直角△OBM中根据勾股定理即可得到一个关于半径的方程,即可求得.【解答】解:作OM⊥AB于点M,连接OB,设圆的半径是x,则在直角△OBM中,OM=2﹣x,BM=1,∵OB2=OM2+BM2,∴x2=(2﹣x)2+1,解得x=.故选:B.【点评】本题主要考查了切线的性质、垂径定理以及勾股定理,在圆的有关半径、弦长、弦心距之间的计算一般要转化为直角三角形的计算.5.一只小鸟自由自在地在空中飞行,然后随意落在图中所示的某个方格中(每个方格除颜色外完全一样),那么小鸟停在黑色方格中的概率是()第9页共21页A.B.C.D.【考点】几何概率.【分析】确定黑色方格的面积在整个方格中占的比例,根据这个比例即可求出小鸟停在黑色方格中的概率.【解答】解:图上共有15个方格,黑色方格为5个,小鸟最终停在黑色方格上的概率是,即.故选B.【点评】用到的知识点为:概率=相应的面积与总面积之比.6.已知反比例函数的图象经过点(a,b),则它的图象一定也经过()A.(﹣a,﹣b)B.(a,﹣b)C.(﹣a,b)D.(0,0)【考点】反比例函数图象上点的坐标特征.【分析】将(a,b)代入y=即可求出k的值,再根据k=xy解答即可.【解答】解:因为反比例函数的图象经过点(a,b),故k=a×b=ab,只有A案中(﹣a)×(﹣b)=ab=k.故选A.【点评】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.7.已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.【考点】锐角三角函数的定义;互余两角三角函数的关系.【分析】本题可以利用锐角三角函数的定义求解,也可以利用互为余角的三角函数关系式求解.【解答】解:解法1:利用三角函数的定义及勾股定理求解.∵在Rt△ABC中,∠C=90°,∴sinA=,tanB=和a2+b2=c2.∵sinA=,设a=3x,则c=5x,结合a2+b2=c2得b=4x.∴tanB=.故选A.解法2:利用同角、互为余角的三角函数关系式求解.∵A、B互为余角,∴cosB=sin(90°﹣B)=sinA=.第10页共21页又∵sin2B+cos2B=1,∴sinB==,∴tanB===.故选A.【点评】求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.8.在同一直角坐标系中,函数y=kx﹣k与y=(k≠0)的图象大致是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】根据k的取值范围,分别讨论k>0和k<0时的情况,然后根据一次函数和反比例函数图象的特点进行选择正确答案.【解答】解:①当k>0时,一次函数y=kx﹣k经过一、三、四象限,反比例函数的y=(k≠0)的图象经过一、三象限,故B选项的图象符合要求,②当k<0时,一次函数y=kx﹣k经过一、二、四象限,反比例函数的y=(k≠0)的图象经过二、四象限,没有符合条件的选项.故选:B.【点评】此题考查反比例函数的图象问题;用到的知识点为:反比例函数与一次函数的k值相同,则两个函数图象必有交点;一次函数与y轴的交点与一次函数的常数项相关.第11页共21页9.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=5m,点P到CD的距离是3m,则点P到AB的距离是()A.mB.C.D.【考点】相似三角形的应用.【分析】判断出△PAB与△PCD相似,再根据相似三角形对应高的比等于相似比列式计算即可得解.【解答】解:设点P到AB的距离为xm,∵AB∥CD,∴△PAB∽△PCD,∴==,解得x=m.故选C.【点评】本题考查了相似三角形的应用,主要利用了相似三角形对应高的比等于相似比,熟记性质是解题的关键.10.若M(,y1)、N(,y2)、P(,y3)三点都在函数(k>0)的图象上,则y1、y2、y3的大小关系是()A.y2>y3>y1B.y2>y1>y3C.y3>y1>y2D.y3>y2>y1【考点】反比例函数图象上点的坐标特征.【专题】函数思想.【分析】将M(,y1)、N(,y2)、P(,y3)三点分别代入函数(k>0),求得y1、y2、y3的值,然后再来比较它们的大小.【解答】解:∵M(,y1)、N(,y2)、P(,y3)三点都在函数(k>0)的图象上,∴M(,y1)、N(,y2)、P(,y3)三点都满足函数关系式(k>0),∴y1=﹣2k,y2=﹣4k,y3=2k;∵k>0,∴﹣4k<﹣2k<2k,即y3>y1>y2.故选C.【点评】本题考查了反比例函数图象上点的坐标特征.所有反比例函数图象上的点都满足该反比例函数的解析式.第12页共21页11.如图,E是平行四边形ABCD的边BA延长线上的一点,CE交AD于点F,下列各式中错误的是()A.B.C.D.【考点】相似三角形的判定与性质;平行四边形的性质.【专题】压轴题.【分析】根据平行四边形的性质和相似三角形的性质求解.【解答】解:∵AD∥BC∴∵CD∥BE∴△CDF∽△EBC∴,∴∵AD∥BC∴△AEF∽△EBC∴∴D错误.故选D.【点评】此题主要考查了平行四边形、相似三角形的性质.12.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,则sinB的值是()A.B.C.D.【考点】锐角三角函数的定义;圆周角定理;三角形的外接圆与外心.第13页共21页【分析】求角的三角函数值,可以转化为求直角三角形边的比,连接DC.根据同弧所对的圆周角相等,就可以转化为:求直角三角形的锐角的三角函数值的问题.【解答】解:连接DC.根据直径