第1页(共19页)2016-2017学年湖北省武汉市江夏区九年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)随着我国经济快速发展,轿车进入百姓家庭,小明同学在街头观察出下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是()A.B.C.D.2.(3分)一元二次方程x2﹣3x﹣8=0的两根分别为x1、x2,则x1x2=()A.2B.﹣2C.8D.﹣83.(3分)抛物线y=x2﹣2x+1与坐标轴交点个数为()A.无交点B.1个C.2个D.3个4.(3分)如图所示,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为N,则ON=()A.5B.7C.9D.115.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5B.k<5,且k≠1C.k≤5,且k≠1D.k>56.(3分)如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A.B.2C.3D.27.(3分)若抛物线y=x2﹣2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为()A.y=(x﹣2)2+3B.y=(x﹣2)2+5C.y=x2﹣1D.y=x2+48.(3分)“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式CH4,乙烷的化学式是C2H6,丙烷的化学式是C3H8,…,设碳原子的数目为n(n为正整数),则它们的化学式都可以用下列哪个式子来表示()A.CnH2n+2B.CnH2nC.CnH2n﹣2D.CnHn+39.(3分)一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()第2页(共19页)A.B.C.D.10.(3分)O是等边△ABC内的一点,OB=1,OA=2,∠AOB=150°,则OC的长为()A.B.C.D.3二、填空题(每小题3分,共18分)11.(3分)构造一个根为2和3的一元二次方程(写一个即可,不限形式)12.(3分)某种植物的主干长出若干数目的支干,每个支干又长出相同数目的小分支,若干小分支、支干和主干的总数是73,则每个支干长出个小分支.13.(3分)已知A(0,3)、B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的对称轴是.14.(3分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE=.15.(3分)如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC上,以AD为折痕△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是.16.(3分)函数y=的图象与直线y=﹣x+n只有两个不同的公共点,则n的取值为.第3页(共19页)三、解答题(共72分)17.(8分)解方程:x2+4x﹣5=0.18.(8分)如图,两个圆都以点O为圆心,大圆的弦AB交小圆于C、D两点.求证:AC=BD.19.(8分)江夏某村种植的水稻2010年平均亩产500kg,2012年平均亩产605kg,求该村亩产量的年平均增长率.20.(8分)如图,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,4)(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1,直接写出点A1的坐标;(2)请画出△ABC绕原点O顺时针旋转90°的图形△A2B2C2,直接写出点A2的坐标;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.21.(8分)已知:关于x的方程x2+(8﹣4m)x+4m2=0(1)若方程有两个相等的实数根,求m的值,并求出此时方程的根;(2)是否存在实数m,使方程的两个实数根的平方和等于136?若存在,请求出满足条件的m值;若不存在,请说明理由.22.(10分)某商场销售的某种商品每件的标价是80元,若按标价的八折销售,仍可盈利60%,此时该种商品每星期可卖出220件,市场调查发现:在八折销售的基础上,该种商品每降价1元,每星期可多卖20件.设每件商品降价x元(x为整数),每星期的利润为y元(1)求该种商品每件的进价为多少元?(2)当售价为多少时,每星期的利润最大?最大利润是多少?(3)2015年2月该种商品每星期的售价均为每件m元,若2015年2月的利润不低于24000元,请直接写出m的取值范围.23.(10分)如图1,我们把对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.第4页(共19页)(2)性质探究:试探索垂美四边形ABCD两组对边AB,CD与BC,AD之间的数量关系.猜想结论:(要求用文字语言叙述)写出证明过程(先画出图形,写出已知、求证).(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.24.(12分)如图,抛物线y=﹣x2﹣2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(1)求A、B、C的坐标;(2)过抛物线上一点F作y轴的平行线,与直线AC交于点G.若FG=AC,求点F的坐标;(3)E(0,﹣2),连接BE.将△OBE绕平面内的某点逆时针旋转90°得到△O′B′E′,O、B、E的对应点分别为O′、B′、E′.若点B′、E′两点恰好落在抛物线上,求点B′的坐标.第5页(共19页)2016-2017学年湖北省武汉市江夏区九年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2016•随州)随着我国经济快速发展,轿车进入百姓家庭,小明同学在街头观察出下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、不是轴对称图形,是中心对称图形.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.2.(3分)(2016秋•江夏区期中)一元二次方程x2﹣3x﹣8=0的两根分别为x1、x2,则x1x2=()A.2B.﹣2C.8D.﹣8【分析】直接利用根与系数的关系求解.【解答】解:∵一元二次方程x2﹣3x﹣8=0的两根分别为x1,x2,∴x1•x2=﹣8.故选D.【点评】本题考查了根与系数的关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.3.(3分)(2014•东海县模拟)抛物线y=x2﹣2x+1与坐标轴交点个数为()A.无交点B.1个C.2个D.3个【分析】当x=0时,求出与y轴的纵坐标;当y=0时,求出关于x的一元二次方程x2﹣2x+1=0的根的判别式的符号,从而确定该方程的根的个数,即抛物线y=x2﹣2x+1与x轴的交点个数.【解答】解:当x=0时,y=1,则与y轴的交点坐标为(0,1),当y=0时,x2﹣2x+1=0,△=(﹣2)2﹣4×1×1=0,所以,该方程有两个相等的解,即抛物线y=x2﹣2x+2与x轴有1个点.综上所述,抛物线y=x2﹣2x+1与坐标轴的交点个数是2个.第6页(共19页)故选C.【点评】此题考查了抛物线与x轴的交点,以及一元二次方程的解法,其中令抛物线解析式中x=0,求出的y值即为抛物线与y轴交点的纵坐标;令y=0,求出对应的x的值,即为抛物线与x轴交点的横坐标.4.(3分)(2016•黄石)如图所示,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为N,则ON=()A.5B.7C.9D.11【分析】根据⊙O的半径为13,弦AB的长度是24,ON⊥AB,可以求得AN的长,从而可以求得ON的长.【解答】解:由题意可得,OA=13,∠ONA=90°,AB=24,∴AN=12,∴ON=,故选A.【点评】本题考查垂径定理,解题的关键是明确垂径定理的内容,利用垂径定理解答问题.5.(3分)(2016•桂林)若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5B.k<5,且k≠1C.k≤5,且k≠1D.k>5【分析】根据方程为一元二次方程且有两个不相等的实数根,结合一元二次方程的定义以及根的判别式即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:∵关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选B.【点评】本题考查了根的判别式以及一元二次方程的定义,解题的关键是得出关于k的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,根据方程根的个数结合一元二次方程的定义以及根的判别式得出不等式组是关键.6.(3分)(2016•宜宾)如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()第7页(共19页)A.B.2C.3D.2【分析】通过勾股定理计算出AB长度,利用旋转性质求出各对应线段长度,利用勾股定理求出B、D两点间的距离.【解答】解:∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=1,在Rt△BED中,BD==.故选:A.【点评】题目考查勾股定理和旋转的基本性质,解决此类问题的关键是掌握旋转的基本性质,特别是线段之间的关系.题目整体较为简单,适合随堂训练.7.(3分)(2016•眉山)若抛物线y=x2﹣2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为()A.y=(x﹣2)2+3B.y=(x﹣2)2+5C.y=x2﹣1D.y=x2+4【分析】思想判定出抛物线的平移规律,根据左加右减,上加下减的规律即可解决问题.【解答】解:将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,这个相当于把抛物线向左平移有关单位,再向下平移3个单位,∵y=(x﹣1)2+2,∴原抛物线图象的解析式应变为y=(x﹣1+1)2+2﹣3=x2﹣1,故答案为C.【点评】本题考查二次函数图象的平移,解题的关键是理解坐标系的平移和抛物线的平移是反方向的,记住左加右减,上加下减的规律,属于中考常考题型.8.(3分)(2016•娄底)“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式CH4,乙烷的化学式是C2H6,丙烷的化学式是C3H8,…,设碳原子的数目为n(n为正整数),则它们的化学式都可以用下列哪个式子来表示()A.CnH2n+2B.CnH2nC.CnH2n﹣2D.CnHn+3【分析】设碳原子的数目为n(n为正整数)时,氢原子的数目为an,列出部分an的值,根据数值的变化找出变化规律“an=2n+2”,依次规律即可解决问题.【解答】解:设碳原子的数目为n(n为正整数)时,氢原子的数目为an,观察,发现规律:a1=4=2×1+2,a2=6=2×2+2,a3=8=2×3+2,…,∴an=2n+2.第8页(共19页)∴碳原子的数目为n(n为正整数)时,它的化学式为CnH2n+2.故选A.【点评】本题考查了规律型中的数字的变化类,解题的关键是找出变化规律“an=2n+2”.本题属于基础题,难度不大,解决该题型题目时,根据碳原子的变化找出氢原子的变化规律是关键.9.(3分)(2016秋•江夏区期中)一次函数