12016-2017学年湖北省襄阳市宜城市九年级(上)期中数学试卷一、选择题(本大题有10个小题,每小题3分,共30分.)1.(3分)已知关于x的方程x2+3x+a=0有一个根为﹣2,则a的值为()A.5B.2C.﹣2D.﹣52.(3分)已知关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,则m的取值范围是()A.m>1B.m<1C.m≥1D.m≤13.(3分)二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是()A.y=(x﹣1)2+2B.y=(x﹣2)2+4C.y=(x﹣2)2+2D.y=(x﹣1)2+34.(3分)有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛两场,则下列方程中符合题意的是()A.x(x﹣1)=45B.x(x+1)=45C.x(x﹣1)=45D.x(x+1)=455.(3分)下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.6.(3分)抛物线y=x2+2x+3的对称轴是()A.直线x=1B.直线x=﹣1C.直线x=﹣2D.直线x=27.(3分)如图,在⊙O中,=,∠AOB=44°,则∠ADC的度数是()A.44°B.34°C.22°D.12°8.(3分)如图,在正方形ABCD中,△ABE经旋转,可与△CBF重合,AE的延长线交FC于点M,以下结论正确的是()A.AM⊥FCB.BF⊥CFC.BE=CED.FM=MC9.(3分)如图,⊙O的半径为2,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC互补,则弦BC的长为()2A.4B.3C.2D.10.(3分)一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.二、填空题(本大题有5个小题,每小题3分,共15分.)11.(3分)一元二次方程x2+3x﹣4=0的两根分别为.12.(3分)已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则a+b的值是.13.(3分)已知二次函数y=(x﹣1)2+4,若y随x的增大而增大,则x的取值范围是.14.(3分)如图,四边形ABCD内接于⊙O,∠DAB=120°,连接OC,点P是半径OC上任意一点,连接DP,BP,则∠BPD可能为度(写出一个即可).15.(3分)如图,Rt△OAB的顶点A(﹣4,8)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为.16.(3分)如图,已知正方形ABCD的边长为6,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=2,则FM的长为.3三、解答题(本大题共9个小题,计69分.)17.(6分)先化简,再求值:(1﹣)÷﹣,其中x2+x﹣2=0.18.(6分)已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.19.(6分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C(0,0)(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;(2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O;(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标.20.(6分)某地2014年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加.2016年在2014年的基础上增加投入资金1600万元,从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?21.(7分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.(1)若苗圃园的面积为72平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由.422.(8分)正方形ABCD内接于⊙O,如图所示,在劣弧上取一点E,连接DE、BE,过点D作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:(1)四边形EBFD是矩形;(2)DG=BE.23.(10分)某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?24.(10分)如图,已知△ABC是等腰三角形,顶角∠BAC=α(α<60°),D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转α到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.(1)求证:BE=CD;(2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明.25.(13分)在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(﹣1,0),如图所示:抛物线y=ax2+ax﹣2经过点B.(1)求点B的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.562016-2017学年湖北省襄阳市宜城市九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题有10个小题,每小题3分,共30分.)1.(3分)(2016秋•宜城市期中)已知关于x的方程x2+3x+a=0有一个根为﹣2,则a的值为()A.5B.2C.﹣2D.﹣5【分析】将x=﹣2代入方程x2+3x+a=0,得4﹣6+a=0,解之可得a的值.【解答】解:根据题意,将x=﹣2代入方程x2+3x+a=0,得:4﹣6+a=0,解得:a=2,故选:B.【点评】本题主要考查一元二次方程的解,掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解是解题的关键.2.(3分)(2016•自贡)已知关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,则m的取值范围是()A.m>1B.m<1C.m≥1D.m≤1【分析】根据关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,可知△≥0,从而可以求得m的取值范围.【解答】解:∵关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,∴△=b2﹣4ac=22﹣4×1×[﹣(m﹣2)]≥0,解得m≥1,故选C.【点评】本题考查根的判别式,解题的关键是明确当一元二次方程有实数根时,△≥0.3.(3分)(2016秋•宜城市期中)二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是()A.y=(x﹣1)2+2B.y=(x﹣2)2+4C.y=(x﹣2)2+2D.y=(x﹣1)2+3【分析】利用配方法整理即可得解.【解答】解:y=x2﹣2x+4=(x2﹣2x+1)+3,=(x﹣1)2+3,所以,y=(x﹣1)2+3.故选:D.【点评】本题考查了二次函数的三种形式,熟练掌握配方法是解题的关键.4.(3分)(2016秋•宜城市期中)有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛两场,则下列方程中符合题意的是()A.x(x﹣1)=45B.x(x+1)=45C.x(x﹣1)=45D.x(x+1)=45【分析】根据题意,可以明确列出相应的一元二次方程,本题得以解决.7【解答】解:由题意可得,x(x﹣1)=45,故选A.【点评】本题考查由实际问题抽象出一元二次方程,本题是一道典型的双循环问题,解题的关键是明确题意,列出相应的方程.5.(3分)(2013•黑龙江)下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是中心对称图形,也是轴对称图形,故本选项正确.故选D.【点评】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.6.(3分)(2016•南充)抛物线y=x2+2x+3的对称轴是()A.直线x=1B.直线x=﹣1C.直线x=﹣2D.直线x=2【分析】先把一般式化为顶点式,然后根据二次函数的性质确定抛物线的对称轴方程.【解答】解:∵y=x2+2x+3=(x+1)2+2,∴抛物线的对称轴为直线x=﹣1.故选B.【点评】本题考查了二次函数的性质:对于二次函数y=ax2+bx+c(a≠0),它的顶点坐标是(﹣,),对称轴为直线x=﹣.7.(3分)(2016秋•宜城市期中)如图,在⊙O中,=,∠AOB=44°,则∠ADC的度数是()A.44°B.34°C.22°D.12°8【分析】根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得∠ADC=∠AOB,进而可得答案.【解答】解:∵在⊙O中,=,∠AOB=44°,∴∠ADC=22°,故选:C.【点评】此题主要考查了圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.(3分)(2016秋•宜城市期中)如图,在正方形ABCD中,△ABE经旋转,可与△CBF重合,AE的延长线交FC于点M,以下结论正确的是()A.AM⊥FCB.BF⊥CFC.BE=CED.FM=MC【分析】依据旋转的性质可知∠BAE=∠BCF,然后可证明∠BFC+∠BAE=90°,从而可得到问题的答案.【解答】解:∵△ABE经旋转,可与△CBF重合,∴∠BAE=∠BCF,∠ABE=∠CBF.∴∠BCF+∠BFC=90°.∴∠BFC+∠BAE=90°.∴∠FMA=90°.∴AM⊥FC.故选:A.【点评】本题主要考查的是旋转的性质,证得∠BFC+∠BAE=90°是解题的关键.9.(3分)(2016秋•宜城市期中)如图,⊙O的半径为2,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC互补,则弦BC的长为()A.4B.3C.2D.【分析】作弦心距OD,先根据已知求出∠BOC=120°,由等腰三角形三线合一的性质得:∠DOC=∠BOC=60°,利用30°角所对的直角边是斜边的一半可求得OD的长,根据勾股定理得DC的长,最后利用垂径定理得出结论.9【解答】解∵∠BAC与∠BOC互补,∴∠BAC+∠BOC=180°,∵∠BAC=∠BOC,∴∠BOC=120°,过O作OD⊥BC,垂足为D,∴BD=CD,∵OB=OC,∴OB平分∠BOC,∴∠DOC=∠BOC=60°,∴∠OCD=90°﹣60°=30°,在Rt△DOC中,OC=2,∴OD=1,∴DC=,∴BC=2DC=2,故选C.【点评】本题考查了圆周角定理、垂径定理及等腰三角形三线合一的性质,熟练掌握垂径定理是关键,本题中利用圆周角定理中圆周角与圆心角的关系得出角的度数,从而得到△ODC是30°的直角三角形,根据30°角所对的直角边是斜边的一半得到OD的长,从而得出弦BC的长.10.(3分)(2016秋•宜城市期中)一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】根据一次函数的性质和二次函数的性质,由函数图象可以判断a、b的正负情