九年级数学上册21.2.2+公式法同步测试+新人教版

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

公式法1.方程x2+x-1=0的一个根是(D)A.1-5B.1-52C.-1+5D.-1+52【解析】用公式法解得x=-1±52.2.一元二次方程x2+x-2=0的根的情况是(A)A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根3.[2012·南昌]已知关于x的一元二次方程x2+2x-a=0有两个相等的实数根,则a的值是(B)A.1B.-1C.14D.-14【解析】∵关于x的一元二次方程x2+2x-a=0有两个相等的实数根,∴Δ=b2-4ac=0,即22-4(-a)=0,解得a=-1.4.[2012·广安]已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是(C)A.a>2B.a<2C.a<2且a≠1D.a<-2【解析】Δ=4-4(a-1)=8-4a>0,得a<2.又a-1≠0,∴a<2且a≠1.5.方程4y2=5-y化成一般形式后,a=__4__,b=__1__,c=__-5__,则b2-4ac=__81__,所以方程的根为__y1=1,y2=-54__.6.[2013·滨州]一元二次方程2x2-3x+1=0的解为__x1=1,x2=12__.7.方程2x2+5x-3=0的解是__x1=-3,x2=12__.8.如果关于x的一元二次方程x2-6x+c=0(c是常数)没有实数根,那么c的取值范围是__c>9__.【解析】∵关于x的一元二次方程x2-6x+c=0(c是常数)没有实数根,∴Δ=(-6)2-4c<0,即36-4c<0,c>9.9.不解方程,判断下列一元二次方程的根的情况:(1)3x2-2x-1=0;(2)2x2-x+1=0;(3)4x-x2=x2+2;(4)3x-1=2x2.解:(1)Δ>0,方程有两个不相等的实数根;(2)Δ<0,方程没有实数根;(3)Δ=0,方程有两个相等的实数根;(4)Δ>0,方程有两个不相等的实数根.10.用公式法解方程:(1)x2-5x+2=0;(2)x2=6x+1;(3)2x2-3x=0;(4)3x2+6x-5=0;(5)0.2x2-0.1=0.4x;(6)2x-2=2x2.解:(1)x1=5+172,x2=5-172;(2)x1=3+10,x2=3-10;(3)x1=0,x2=32;(4)x1=-3+263,x2=-3-263;(5)x1=2+62,x2=2-62;(6)无解.11.用两种不同的方法解一元二次方程x2+4x-2=0.解:方法一:由原方程得x2+4x+4=2+4,即(x+2)2=6,∴x+2=±6,∴x=-2±6,∴x1=-2+6,x2=-2-6.方法二:∵a=1,b=4,c=-2,Δ=b2-4ac=42-4×1×(-2)=24>0,∴x=-4±242=-2±6,∴x1=-2+6,x2=-2-6.12.用适当的方法解一元二次方程:(1)(3x+1)2-9=0;(2)x2+4x-1=0;(3)3x2-2=4x;(4)(y+2)2=1+2y.解:(1)x1=23,x2=-43;(2)x1=-2-5,x2=-2+5;(3)x1=2+103,x2=2-103;(4)无解.13.先化简,再求值:x+1-3x-1÷x2-4x+4x-1,其中x满足方程x2+x-6=0.解:x+1-3x-1÷x2-4x+4x-1=x2-1x-1-3x-1÷(x-2)2x-1=(x+2)(x-2)x-1·x-1(x-2)2=x+2x-2.由x2+x-6=0可解得x1=2(不合题意,舍去),x2=-3,∴x=-3.∴原式=x+2x-2=-3+2-3-2=15.14.[2012·珠海]已知关于x的一元二次方程x2+2x+m=0.(1)当m=3时,判断方程的根的情况;(2)当m=-3时,求方程的根.解:(1)当m=3时,b2-4ac=22-4×1×3=-8<0,∴原方程没有实数根;(2)当m=-3时,x2+2x-3=0,∵a=1,b=2,c=-3,Δ=b2-4ac=4-4×1×(-3)=16,∴x=-2±162=-2±42,∴x1=-3,x2=1.15.已知关于x的一元二次方程(m-1)x2-2mx+m=0有两个实数根,求m的取值范围.【解析】由方程根的情况得到关于m的不等式,若二次项中存在字母系数,则系数不为零,从以上两个方面确定字母的取值范围.解:因为一元二次方程有两个实数根,所以Δ≥0,即(-2m)2-4(m-1)·m≥0,所以4m2-4m2+4m≥0,m≥0.又因为m-1≠0,所以m≠1,所以m的取值范围是m≥0且m≠1.16.已知关于x的一元二次方程x2+2x+2k-4=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值.解:(1)Δ=b2-4ac=4-4(2k-4)=20-8k.∵方程有两个不等的实根∴20-8k0∴k52.(2)∵k为整数,∴0k52(且k为整数),即k为1或2,∴x1=-1+5-2k,x2=-1-5-2k.∵方程的根为整数,∴5-2k为完全平方数.当k=1时,5-2k=3;当k=2时,5-2k=1.∴k=2.

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功