第二十五章检测卷时间:120分钟满分:150分班级:__________姓名:__________得分:__________一、选择题(本题共12小题,每小题3分,共36分)1.下列事件中,是必然事件的是()A.两条线段可以组成一个三角形B.400人中有两个人的生日在同一天C.早上的太阳从西方升起D.打开电视机,它正在播放动画片2.“遵义地区明天降水概率是15%”,下列说法中,正确的是()A.遵义地区明天降水的可能性较小B.遵义地区明天将有15%的时间降水C.遵义地区明天将有15%的地区降水D.遵义地区明天肯定不降水3.一儿童行走在如图所示的地板上,当他随意停下时,最终停在地板上阴影部分的概率是()A.13B.12C.34D.234.东营市某学校组织知识竞赛,共设有20道试题,其中有关中国优秀传统文化试题10道,实践应用试题6道,创新能力试题4道.小婕从中任选一道试题作答,她选中创新能力试题的概率是()A.15B.310C.25D.125.同时抛掷两枚1元的硬币,菊花图案都朝上的概率是()A.12B.13C.14D.156.有一新娘去商店买新婚礼服,购买了不同款式的上衣2件,不同颜色的裙子3条,则搭配衣服所有可能出现的结果为()A.2种B.3种C.5种D.6种7.两道单选题都含A、B、C、D四个选项,瞎猜这两道题,恰好全部猜对的概率是()A.12B.14C.18D.1168.某口袋中有20个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球则获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则获胜.当游戏对甲、乙双方公平时,x的值为()A.3B.4C.5D.69.如图的两个转盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是()A.825B.625C.425D.192510.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为B()A.12B.15C.18D.2111.小明从家里出发到学校共经过3个路口,每个路口都有红绿灯,如果红灯亮的时间为20秒,绿灯亮的时间为40秒,那么小明从家里出发到学校一路通行无阻的概率是()A.23B.49C.827D.2912.一个质地均匀的正四面体的四个面上依次标有数字-2、0、1、2,连续抛掷两次,朝下一面的数字分别是a、b,将其作为M点的横、纵坐标,则点M(a,b)落在以A(-2,0)、B(2,0)、C(0,2)为顶点的三角形内(包含边界)的概率是()A.38B.716C.12D.916二、填空题(本大题共6小题,每小题4分,共24分)13.一只不透明的袋子中有1个白球、1个红球和2个黄球,这些球除颜色不同外其他都相同.搅匀后从中任意摸出1个球,摸出白球的可能性摸出黄球的可能性(填“等于”“小于”或“大于”).14.抛掷一枚质地均匀的正方体骰子,朝上一面的点数为偶数的概率是.15.如图,一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为.第15题图16.做任意抛掷一只纸杯的重复试验,记录杯口朝上的次数,获得如下数据:抛掷总次数100150200300杯口朝上的频数21324466估计任意抛掷一只纸杯,杯口朝上的概率是.17.一个不透明的口袋里有10个黑球和若干个黄球,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验200次,其中有120次摸到黄球,由此估计袋中的黄球有个.18.“十一”黄金周期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩.甲地到乙地有两条公路,乙地到丙地有三条公路.每一条公路的长度如图所示(单位:km).梁先生任选一条从甲地到丙地的路线,这条路线正好是最短路线的概率是.第18题图三、解答题(本题共8小题,共90分,解答时应写出必要的文字说明、证明过程或演算步骤)19.(10分)北京地铁二线内环列车,平均每隔4分钟就有一列列车经过某地铁站,一列列车从该站开出环行40分钟回到该站,已知该线上有6列新的列车,其余为原来的列车,张华从该车站乘内环列车.张华乘坐哪种列车的可能性较大?哪种列车的可能性较小?20.(10分)有A、B、C、D四张卡片上分别写有-2、3、57、π四个实数,从中任取两张卡片.(1)请列举所有可能的结果(分别用字母A、B、C、D表示);(2)求取到的两个数都是无理数的概率.21.(10分)一个不透明口袋中装有6个红球、9个黄球、3个绿球,这些球除颜色外没有任何区别,从中任意摸出一个球.(1)求摸到绿球的概率;(2)再向口袋中放入几个绿球,才能使摸到绿球的概率为14?22.(10分)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格;事件A必然事件随机事件m的值(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m的值.23.(12分)某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m,200m,400m(分别用A1、A2、A3表示);田赛项目:跳远,跳高(分别用B1、B2表示).(1)该同学从5个项目中任选一个,恰好是田赛项目的概率为________;(2)该同学从5个项目中任选两个,利用树状图或列表列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.24.(12分)小晗家客厅装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.(1)若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?(2)若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明.25.(12分)如图,一条直线上有两只蚂蚁,甲蚂蚁在点A处,乙蚂蚁在点B处,假设两只蚂蚁同时出发,爬行方向只能沿直线AB在“向左”或“向右”中随机选择,并且甲蚂蚁爬行的速度比乙蚂蚁快.(1)甲蚂蚁选择“向左”爬行的概率为________;(2)利用列表或画树状图的方法求两只蚂蚁开始爬行后会“触碰到”的概率.26.(14分)王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.摸球的次数n1001502005008001000摸出黑球的次数m233160130203251摸到黑球的频率mn0.230.210.300.260.2530.251(1)根据上表数据估计从袋中摸出一个球是黑球的概率是________;(2)估算袋中白球的个数;(3)在(2)的条件下,若小强同学有放回地连续两次摸球,用画树状图或列表的方法计算他两次都摸出白球的概率.答案1.B2.A3.A4.A5.C6.D7.D8.B9.B10.B11.C12.B解析:列举出事件:ab-2012-2(-2,-2)(-2,0)(-2,1)(-2,2)0(0,-2)(0,0)(0,1)(0,2)1(1,-2)(1,0)(1,1)(1,2)2(2,-2)(2,0)(2,1)(2,2)共有16种结果,而落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)有:(-2,0),(0,0),(1,0),(2,0),(0,1),(1,1),(0,2)共7种可能情况,所以落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是716,故选B.13.小于14.1215.3716.0.2217.1518.1619.解:∵40÷4=10,∴该线上有10列列车.(2分)∵该线上有6列新的列车,∴乘坐新车的可能性为610=35,(5分)乘坐旧车的可能性为410=25.(8分)∴张华乘坐新列车的可能性较大,旧列车的可能性较小.(10分)20.解:(1)共有六种等可能的结果,即AB、AC、AD、BC、BD、CD;(5分)(2)P(两个都是无理数)=16.(10分)21.解:(1)6+9+3=18(个),P(摸到绿球)=318=16;(5分)(2)设需要向这个口袋中再放入x个绿球,(6分)则依题意得3+x18+x=14,解得x=2.(9分)答:需要向这个口袋中再放入2个绿球.(10分)22.解:(1)4(2分)(2)2,3(5分)(3)根据题意得6+m10=45,解得m=2,所以m的值为2.(10分)23.解:(1)25(3分)(2)画树状图如下:∵共有20种等可能的结果,(9分)恰好是一个田赛项目和一个径赛项目的有12种情况,∴恰好是一个田赛项目和一个径赛项目的概率为1220=35.(12分)24.解:(1)小晗任意按下一个开关,正好楼梯灯亮的概率是13;(5分)(2)画树状图得:(9分)∵共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,∴正好客厅灯和走廊灯同时亮的概率是26=13.(12分)25.解:(1)12(2)画树状图如下:∵共有4种等可能情况,两只蚂蚁开始爬行后会“触碰到”的有2种情况,∴两只蚂蚁开始爬行后会“触碰到”的概率为24=12.(12分)26.解:(1)0.25(3分)(2)设袋中白球为x个,依题意有11+x=0.25,解得x=3.(7分)答:估计袋中有3个白球;(8分)(3)用B代表一个黑球,W1、W2、W3代表白球,将摸球情况列表如下:(12分)第二次第一次BW1W2W3B(B,B)(B,W1)(B,W2)(B,W3)W1(W1,B)(W1,W1)(W1,W2)(W1,W3)W2(W2,B)(W2,W1)(W2,W2)(W2,W3)W3(W3,B)(W3,W1)(W3,W2)(W3,W3)总共有16种等可能的结果,其中两个球都是白球的结果有9种,所以摸到两个球都是白球的概率为916.(14分)