九年级(上)第一次月考数学试卷一、选择题1.下列关系式中,属于二次函数的是(x为自变量)()A.y=x2B.y=C.y=D.y=a2x22.二次函数y=2(x﹣1)2+3的图象的顶点坐标是()A.(1,3)B.(﹣1,3)C.(1,﹣3)D.(﹣1,﹣3)3.抛物线y=x2+x﹣4的对称轴是()A.x=﹣2B.x=2C.x=﹣4D.x=44.抛物线y=﹣x2+2kx+2与x轴交点的个数为()A.0个B.1个C.2个D.以上都不对5.如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a﹣b+c的值为()A.0B.﹣1C.1D.26.已知二次函数y=2x2+4x﹣5,设自变量的值分别为x1、x2、x3,且﹣1<x1<x2<x3,则对应的函数值y1、y2、y3的大小关系为()A.y1>y2>y3B.y1<y2<y3C.y2<y3<y1D.y2>y3>y17.二次函数y=ax2+bx+c对于x的任何值都恒为负值的条件是()A.a>0,△>0B.a>0,△<0C.a<0,△>0D.a<0,△<08.把抛物线y=﹣2x2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.y=﹣2(x﹣1)2+6B.y=﹣2(x﹣1)2﹣6C.y=﹣2(x+1)2+6D.y=﹣2(x+1)2﹣69.二次函数y=ax2+bx+c的图象如图所示,则abc,b2﹣4ac,2a+b,a+b+c这四个式子中,值为正数的有()A.4个B.3个C.2个D.1个10.函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是()A.B.C.D.二、填空题11.当m=时,函数y=(m﹣4)x+3x是关于x的二次函数.12.初三数学课本上,用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格:x…﹣2﹣1012…y…﹣4﹣2…根据表格上的信息回答问题:该二次函数y=ax2+bx+c在x=3时,y=.13.已知抛物线y=ax2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.14.二次函数y=ax2+bx+c的图象如图,则直线y=ax+bc的图象不经过第象限.15.抛物线y=x2﹣2x﹣3关于x轴对称的抛物线的解析式为.16.已知抛物线y=x2﹣(k+2)x+9的顶点在坐标轴上,则k的值为.三.解答题(共计72分)17.通过配方,写出下列函数的开口方向,对称轴和顶点坐标.(1)y=﹣3x2+8x﹣2(2)y=﹣x2+x﹣4.18.根据条件求二次函数的解析式:(1)抛物线的顶点坐标为(﹣1,﹣1),且与y轴交点的纵坐标为﹣3(2)抛物线在x轴上截得的线段长为4,且顶点坐标是(3,﹣2).19.校运会上,小明参加铅球比赛,若某次试掷,铅球飞行的高度y(m)与水平距离x(m)之间的函数关系式为y=﹣x2+x+,求:(1)铅球的出手时的高度;(2)小明这次试掷的成绩.20.如图,直线y=2x+2与x轴、y轴分别相交于A、B两点,将△AOB绕点O顺时针旋转90°得到△A1OB1.(1)在图中画出△A1OB1;(2)求经过A,A1,B1三点的抛物线的解析式.21.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;(2)求△MCB的面积S△MCB.22.二次函数y=ax2+bx+c的图象过A(﹣3,0),B(1,0),C(0,3),点D在函数图象上,点C,D是二次函数图象上的一对对称点,一次函数图象过点B,D,求:(1)一次函数和二次函数的解析式;(2)写出使一次函数值大于二次函数值的x的取值范围.23.一座隧道的截面由抛物线和长方形构成,长方形的长为8m,宽为2m,隧道最高点P位于AB的中央且距地面6m,建立如图所示的坐标系:(1)求抛物线的解析式;(2)一辆货车高4m,宽2m,能否从该隧道内通过,为什么?(3)如果隧道内设双行道,那么这辆货车是否可以顺利通过,为什么?24.某工厂设门市部专卖某产品,该产品每件成本40元,从开业一段时间的每天销售统计中,随机抽取一部分情况如下表所示:每件销售价(元)506070758085…每天售出件数30024018015012090…假设当天定的售价是不变的,且每天销售情况均服从这种规律.(1)观察这些统计数据,找出每天售出件数y与每件售价x(元)之间的函数关系,并写出该函数关系式.(2)门市部原设有两名营业员,但当销售量较大时,在每天售出量超过168件时,则必须增派一名营业员才能保证营业有序进行,设营业员每人每天工资为40元.求每件产品应定价多少元,才能使每天门市部纯利润最大(纯利润指的是收入总价款扣除成本及营业员工资后的余额,其它开支不计)九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题1.下列关系式中,属于二次函数的是(x为自变量)()A.y=x2B.y=C.y=D.y=a2x2【考点】二次函数的定义.【分析】根据二次函数的定义判定即可.【解答】解:A、y=x2,是二次函数,正确;B、y=,被开方数含自变量,不是二次函数,错误;C、y=,分母中含自变量,不是二次函数,错误;D、a=0时,a2=0,不是二次函数,错误.故选A.【点评】本题考查二次函数的定义.2.二次函数y=2(x﹣1)2+3的图象的顶点坐标是()A.(1,3)B.(﹣1,3)C.(1,﹣3)D.(﹣1,﹣3)【考点】二次函数的性质.【分析】根据二次函数的顶点式的特点,可直接写出顶点坐标.【解答】解:二次函数y=2(x﹣1)2+3为顶点式,其顶点坐标为(1,3).故选A.【点评】本题考查了二次函数的性质,把二次函数解析式整理成顶点式形式是解题的关键.3.抛物线y=x2+x﹣4的对称轴是()A.x=﹣2B.x=2C.x=﹣4D.x=4【考点】二次函数的性质.【分析】可以用配方法将抛物线的一般式写成顶点式,或者用对称轴公式x=.【解答】解:∵抛物线y=x2+x﹣4=(x﹣2)2﹣3,∴顶点横坐标为x=2,对称轴就是直线x=2.故选B.【点评】数形结合,二次函数y=ax2+bx+c的图象为抛物线,其对称轴为x=.4.抛物线y=﹣x2+2kx+2与x轴交点的个数为()A.0个B.1个C.2个D.以上都不对【考点】抛物线与x轴的交点.【分析】让函数值为0,得到一元二次方程,根据根的判别式判断有几个解就有与x轴有几个交点.【解答】解:当与x轴相交时,函数值为0.0=﹣x2+2kx+2,△=b2﹣4ac=4k2+8>0,∴方程有2个不相等的实数根,∴抛物线y=﹣x2+2kx+2与x轴交点的个数为2个,故选C.【点评】用到的知识点为:x轴上的点的纵坐标为0;抛物线与x轴的交点个数与函数值为0的一元二次方程的解的个数相同.5.如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a﹣b+c的值为()A.0B.﹣1C.1D.2【考点】二次函数的图象.【专题】压轴题.【分析】由“对称轴是直线x=1,且经过点P(3,0)”可知抛物线与x轴的另一个交点是(﹣1,0),代入抛物线方程即可解得.【解答】解:因为对称轴x=1且经过点P(3,0)所以抛物线与x轴的另一个交点是(﹣1,0)代入抛物线解析式y=ax2+bx+c中,得a﹣b+c=0.故选A.【点评】巧妙利用了抛物线的对称性.6.已知二次函数y=2x2+4x﹣5,设自变量的值分别为x1、x2、x3,且﹣1<x1<x2<x3,则对应的函数值y1、y2、y3的大小关系为()A.y1>y2>y3B.y1<y2<y3C.y2<y3<y1D.y2>y3>y1【考点】二次函数图象上点的坐标特征.【分析】在利用二次函数的增减性解题时,对称轴是非常重要的.根据x1、x2、x3,与对称轴的大小关系,判断y1、y2、y3的大小关系.【解答】解:∵y=2x2+4x﹣5=2(x+1)2﹣7,∴抛物线对称轴为直线x=﹣1,∵﹣1<x1<x2<x3,∴在对称轴右侧,y随x的增大而增大,即y1<y2<y3.故选B.【点评】主要考查了函数的对称轴求法和函数的单调性.7.二次函数y=ax2+bx+c对于x的任何值都恒为负值的条件是()A.a>0,△>0B.a>0,△<0C.a<0,△>0D.a<0,△<0【考点】抛物线与x轴的交点.【分析】函数值恒为负值要具备两个条件:①开口向下:a<0,②与x轴无交点,即△<0.【解答】解:如图所示,二次函数y=ax2+bx+c对于x的任何值都恒为负值的条件是:a<0,△<0;故选D.【点评】本题考查了抛物线的性质,二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的图象与x轴交点的个数由△=b2﹣4ac决定;①△=b2﹣4ac>0时,抛物线与x轴有2个交点;②△=b2﹣4ac=0时,抛物线与x轴有1个交点;③△=b2﹣4ac<0时,抛物线与x轴没有交点.抛物线的开口方向由a决定,当a>0时,开口向上,当a<0时,开口向下.8.把抛物线y=﹣2x2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.y=﹣2(x﹣1)2+6B.y=﹣2(x﹣1)2﹣6C.y=﹣2(x+1)2+6D.y=﹣2(x+1)2﹣6【考点】二次函数图象与几何变换.【专题】压轴题.【分析】抛物线平移不改变a的值.【解答】解:原抛物线的顶点坐标为(1,3),向左平移2个单位,再向上平移3个单位得到新抛物线的顶点坐标为(﹣1,6).可设新抛物线的解析式为:y=﹣2(x﹣h)2+k,代入得:y=﹣2(x+1)2+6.故选C.【点评】解决本题的关键是得到新抛物线的顶点坐标.9.二次函数y=ax2+bx+c的图象如图所示,则abc,b2﹣4ac,2a+b,a+b+c这四个式子中,值为正数的有()A.4个B.3个C.2个D.1个【考点】二次函数图象与系数的关系.【专题】数形结合.【分析】由抛物线的开口方向可确定a的符号,由抛物线的对称轴相对于y轴的位置可得a与b之间的符号关系,由抛物线与y轴的交点位置可确定c的符号;由抛物线与x轴交点个数可确定b2﹣4ac的符号;根据抛物线的对称轴与x=1的大小关系可推出2a+b的符号;由于x=1时y=a+b+c,因而结合图象,可根据x=1时y的符号来确定a+b+c的符号.【解答】解:由抛物线的开口向上可得a>0,由抛物线的对称轴在y轴的右边可得x=﹣>0,则a与b异号,因而b<0,由抛物线与y轴的交点在y轴的负半轴上可得c<0,∴abc>0;由抛物线与x轴有两个交点可得b2﹣4ac>0;由抛物线的对称轴x=﹣<1(a>0),可得﹣b<2a,即2a+b>0;由x=1时y<0可得a+b+c<0.综上所述:abc,b2﹣4ac,2a+b这三个式子的值为正数.故选B.【点评】本题主要考查二次函数图象与系数的关系,其中a决定于抛物线的开口方向,b决定于抛物线的开口方向及抛物线的对称轴相对于y轴的位置,c决定于抛物线与y轴的交点位置,b2﹣4ac的符号决定于抛物线与x轴交点个数,2a+b的符号决定于a的符号及﹣与1的大小关系,运用数形结合的思想准确获取相关信息是解决本题的关键.10.函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】根据a、b的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.【解答】解:当a>0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A、D不正确;由B、C中二次函数的图象可知,对称轴x=﹣>0,且a>0,则b<0,但B中,一次函数a>0,b>0,排除B.故选:C.【点评】应该识记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.二、填空题11.当m=1时,函数y=(m﹣4)x+3x是关于x的二次函数.【考点】二次函数的定义.【