22.2降次--解一元二次方程(第六课时)(习题课)◆随堂检测1、关于x的方程0232xax是一元二次方程,则()A、0aB、0aC、1aD、0a2、用配方法解下列方程,其中应在左右两边同时加上4的是()A、522xxB、5422xxC、542xxD、522xx3、方程xxx)1(的根是()A、2xB、2xC、0,221xxD、0,221xx4、已知25是一元二次方程240xxc的一个根,则方程的另一个根是______________.5、用适当的方法解下列方程:(1)0672xx;(2))15(3)15(2xx;(3)0362xx;(4)22510xx.◆典例分析解方程022xx.分析:本题是含有绝对值的方程,可以转化为一元二次方程求解.转化的方法可以不同,请同学们注意转化的技巧.解法一:分类讨论(1)当0x时,原方程化为022xx,解得:,21x12x(不合题意,舍去)(2)当0x时,原方程化为022xx解得:21x,12x(不合题意,舍去)∴原方程的解为2,221xx.解法二:化归换元原方程022xx可化为220xx,令yx,则220yy(0y),解得12,y21y(舍去),当12y时,2x,∴2x,∴原方程的解为2,221xx.◆课下作业●拓展提高1、方程062xx的解是__________________.2、已知1x是关于x的方程2220xaxa的一个根,则a_______.3、12、写出一个两实数根符号相反的一元二次方程:_________________.4、当代数式532xx的值为7时,代数式2932xx的值为()A、4B、2C、-2D、-45、已知x是一元二次方程2310xx的实数根,求代数式235(2)362xxxxx的值.6、阅读材料,解答问题:材料:为解方程222(1)5(1)40xx,我们可以视2(1)x为一个整体.然后设21xy,原方程可化为2540yy①.解得121,4yy.当11y时,211x,即22x,∴2x.当24y时,214x,即25x,∴5x.∴原方程的解为12342,2,5,5xxxx.解答问题:(1)填空:在由原方程得到①的过程中利用_______法,达到了降次的目的,体现了_______的数学思想.(2)解方程4260xx.●体验中考1、(2009年山西)请你写出一个有一根为1的一元二次方程:.2、(2009年湖北襄樊)如图,在ABCD中,AEBC于E,AEEBECa,且a是一元二次方程2230xx的根,则ABCD的周长为()A.422B.1262C.222D.221262或3、(2008年,凉山)已知反比例函数abyx,当0x时,y随x的增大而增大,则关于x的方程220axxb的根的情况是()A.有两个正根B.有两个负根C.有一个正根一个负根D.没有实数根(提示:本题综合了反比例函数和一元二次方程根与系数的关系两个重要的知识点,请认真思考,细心解答.)4、(2008年,齐齐哈尔)三角形的每条边的长都是方程2680xx的根,则三角形的周长是_________________.(点拨:本题综合考查了一元二次方程的解法和三角形的有关知识,特别要注意应用三角形任意两边之和大于第三边这个定理.)参考答案:◆随堂检测1、B.依据一元二次方程的定义可得.2、C.3、D.注意不能在等式两边同除以含有未知数的式子.本题用因式分解法好.4、25依据一元二次方程根与系数的关系可得2254x∴方程的另一个根是225x.5、解:(1)用因式分解法解0672xx得:121,6xx;ADCECB(2)用因式分解法解)15(3)15(2xx得:1214,55xx;(3)用配方法解0362xx得:1236,36xx;(4)用公式法解22510xx得:12533533,44xx.◆课下作业●拓展提高1、123,2xx.选用因式分解法较好.2、2或1将1x代入方程2220xaxa得:220aa,解得122,1aa.3、答案不唯一:如2230xx.4、A.当2357xx时,即232xx,∴代数式223923(3)23224xxxx.故选A.5、解:∵2310xx,∴231xx.化简:223539(2)3623(2)2xxxxxxxxxx3213(2)(3)(3)3(3)xxxxxxxx∵∵∴21113(3)313xx,∴代数式235(2)362xxxxx的值是13.6、解:(1)换元法,转化.(2)设2xy,原方程可化为260yy①.解得123,2yy.当13y时,即23x,∴3x.当22y时,22x无解.∴原方程的解为123,3xx.●体验中考1、答案不唯一,如21x2、A.解析:本题考查平行四边形及一元二次方程的有关知识,∵a是一元二次方程2230xx的根,∴1a,∴AE=EB=EC=1,∴AB=2,BC=2,∴ABCD的周长为422,故选A。3、C∵abyx,当0x时,y随x的增大而增大,∴0ab,∴方程220axxb中△=440ab,方程有两个不相等的实数根.又依据一元二次方程根与系数的关系可得120bxxa,∴方程有一个正根一个负根.故选C.4、6或10或12.解方程2680xx,得14x,22x.∴三角形的每条边的长可以为2、2、2或2、4、4或4、4、4(2、2、4不能构成三角形,故舍去),∴三角形的周长是6或10或12.