页优秀领先飞翔梦想成人成才类比归纳专题:一元二次方程的解法——学会选择最优的解法◆类型一一元二次方程的一般解法方法点拨:形如(x+m)2=n(n≥0)的方程可用直接开平方法;当方程二次项系数为1,且一次项系数为偶数时,可用配方法;若方程移项后一边为0,另一边能分解成两个一次因式的积,可用因式分解法;如果方程不能用直接开平方法和因式分解法求解,则用公式法.1.用合适的方法解下列方程:(1)x-522-14=0;(2)x2-6x+7=0;(3)x2-22x+18=0;(4)3x(2x+1)=4x+2.◆*类型二一元二次方程的特殊解法一、十字相乘法方法点拨:例如:解方程:x2+3x-4=0.第1种拆法:4x-x=3x(正确),第2种拆法:2x-2x=0(错误),所以x2+3x-4=(x+4)(x-1)=0,即x+4=0或x-1=0,所以x1=-4,x2=1.2.解一元二次方程x2+2x-3=0时,可转化为解两个一元一次方程,请写出其中的一个一元一次方程____________.3.用十字相乘法解下列一元二次方程:(1)x2-5x-6=0;(2)x2+9x-36=0.二、换元法方法点拨:在已知或者未知条件中,某个代数式几次出现,可用一个字母来代替它从而简化问题,这就是换元法,当然有时候要通过变形才能换元.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.4.若实数a,b满足(4a+4b)(4a+4b-2)-8=0,则a+b=_______.5.解方程:(x2+5x+1)(x2+5x+7)=7.1.解:(1)移项,得x-522=14,页优秀领先飞翔梦想成人成才两边开平方,得x-52=±14,即x-52=12或x-52=-12,∴x1=3,x2=2;(2)移项,得x2-6x=-7,配方,得x2-6x+9=-7+9,即(x-3)2=2,两边开平方,得x-3=±2,∴x1=3+2,x2=3-2;(3)原方程可化为8x2-42x+1=0.∵a=8,b=-42,c=1,∴b2-4ac=(-42)2-4×8×1=0,∴x=-(-42)±02×8=24,∴x1=x2=24;|(4)原方程可变形为(2x+1)(3x-2)=0,∴2x+1=0或3x-2=0,∴x1=-12,x2=23.2.x-1=0或x+3=0.3.解:(1)原方程可变形为(x-6)(x+1)=0,∴x-6=0或x+1=0,∴x1=6,x2=-1;(2)原方程可变形为(x+12)(x-3)=0,∴x+12=0或x-3=0,∴x1=-12,x2=3.4.-12或15.解:设x2+5x+1=t,则原方程化为t(t+6)=7,∴t2+6t-7=0,解得t=1或-7.当t=1时,x2+5x+1=1,x2+5x=0,x(x+5)=0,∴x=0或x+5=0,∴x1=0,x2=-5;当t=-7时,x2+5x+1=-7,x2+5x+8=0,∴b2-4ac=52-4×1×8<0,此时方程无实数根.∴原方程的解为x1=0,x2=-5.