《旋转》第二节中心对称导学案2主编人:主审人:班级:学号:姓名:学习目标:【知识与技能】1、使学生了解中心对称图形的概念,以及两个图形成中心对称和中心对称图形的关系.2、使学生初步学会识别常见的中心对称图形或图案,并能用推理方式说明一个图形是中心对称图形.【过程与方法】通过对常见图案或常见图形的识别,进一步理解两个图形成中心对称和中心对称图形的关系.【情感、态度与价值观】经历对对称图形的识别,发展学生的审美观,同时让学生知道不仅要看事物的表象,还要了解它的内涵,从而让学生知道平时应提高自己思维深度.【重点】中心对称图形的判断.【难点】两个图形成中心对称和中心对称图形的关系,以及中心对称的判定.学习过程:一、自主学习(一)复习巩固1.关于中心对称的两个图形具有什么性质?2.作图题.(1)作出线段AO关于O点的对称图形,如图所示.BAO(2)作出三角形AOB关于O点的对称图形,如上图所示.(二)自主探究如图1,将线段AB绕它的中点旋转180º,你有什么发现?AO21085如图2,将它绕两对角线的交点O旋转180º,你有什么发现?思考:中心对称图形是举例说明我们学过的还有哪些是中心对称图形?(三)、自我尝试:1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.等腰梯形C.平行四边形D.正六边形2.下面的图案中,是中心对称图形的个数有()个A.1B.2C.3D.43.下面图形中既是轴对称图形又是中心对称图形的是()A.直角B.等边三角形C.直角梯形D.两条相交直线4.下列图形中,是中心对称图形,但不是轴对称图形的是().A.正方形B.矩形C.菱形D.平行四边形5.如图上图所示,平放在正立镜子前的桌面上的数码“21085”在镜子中的像是()A.21085B.28015C.58012D.51082二、教师点拔。1、什么叫做中心对称图形?2、中心对称与中心对称图形的区别:中心对称是指个图形之间的相互位置关系,成中心对称的个图形中,其中一个图形上所有点关于对称中心的对称点都在图形上;而中心对称图形是指个图形成中心对称,中心对称图形上所有点关于对称中心手对称点都在上;中心对称图形的对称中心是图形的点,而两个图形关于某点成中心对称,对称中心位置。3、中心对称图形与轴对称图形之间的联系:1)对称轴条数为的图形是中心对称图形,对称中心是对称轴的交点;2)中心对称图形是轴对称图形,轴对称图形也是中心对称图形;3)对称轴的轴对称图形是中心对称图形;三、课堂检测:1、下列命题中真命题是()A.两个等腰三角形一定全等B.正多边形的每一个内角的度数随边数增多而减少C.菱形既是中心对称图形,又是轴对称图形D.两直线平行,同旁内角相等2、在英文字母VWXYZ中,是中心对称的英文字母的个数有()个.A.1B.2C.3D.43、如图下图,把一张长方形ABCD的纸片,沿EF折叠后,ED′与BC的交点为G,点D、C分别落在D′、C′的位置上,若∠EFG=55°,则∠1=()A.55°B.125°C.70°D.110°4、将矩形ABCD沿AE折叠,得到如图的所示的图形,已知∠CED′=60°,则∠AED的大小是()A.60°B.50°C.75°D.55°5、把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做__________.6、在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角,例如:正方形绕着它的对角线的交点旋转90°后能与自身重合,所以正方形是旋转对称图形,应有一个旋转角为90°.(1)判断下列命题的真假(在相应括号内填上“真”或“假”)①等腰梯形是旋转对称图形,它有一个旋转角为180°;()②矩形是旋转对称图形,它有一个旋转角为180°;()(2)填空:下列图形中是旋转对称图形,且有一个旋转角为120°是_____.(写出所有正确结论的序号)①正三角形;②正方形;③正六边形;④正八边形.(3)写出两个多边形,它们都是旋转对称图形,却有一个旋转角为72°,并且分别满足下列条件:①是轴对称图形,但不是中心对称图形;②既是轴对称图形,又是中心对称图形.四、课外拓展1、如图,矩形ABCD中,AB=3,BC=4,若将矩形折叠,使C点和A点重合,求折痕EF的长.OBA-1yx22、如图,直线y=2x+2与x轴、y轴分别交于A、B两点,将△AOB绕点O顺时针旋转90°得到△A1OB1.(1)在图中画出△A1OB1;(2)设过A、A1、B三点的函数解析式为y=ax2+bx+c,求这个解析式.