教学准备1.教学目标1、知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。2、过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.3、情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心.2.教学重点/难点教学重点:二次函数概念的理解。教学难点:由实际问题确定函数解析式和确定自变量的取值范围。3.教学用具4.标签教学过程一、复习提问1.一元二次方程的一般形式是什么?2。一次函数的定义是什么?【设计意图】复习这些问题是为了引入一元二次此函数做铺垫,帮助学生加深对函数定义的理解.强调k≠0的条件,以备与二次函数中的a进行比较。二、引入新课电脑演示:拱桥、喷泉等与一元二次函数图像有关的图片引起学生对一元二次函数的好奇和兴趣。探索问题1、用周长为20m的篱笆围成矩形场地,场地面积y(m²)与矩形一边长x(m)之间的关系是什么?由学生认真思考并与同桌交流,然后回答下面的问题1设矩形靠墙的一边AB的长xm,矩形的面积ym2.能用含x的代数式来表示y吗?2x的值可以任意取?有限定范围吗?3我们发现y是x的函数,试写出这个函数的关系式探究问题2请用适当的函数解析式表示下列问题情境中的两个变量y与x之间的关系:(1)圆的面积y()与圆的半径x(cm)y=πx2(2)某商店1月份的利润是2万元,2、3月份利润逐月增长,这两个月利润的月平均增长率为x,3月份的利润为yy=2(1+x)2教师提问:以上两个例子所列出的函数有声么特点,学生观察并讨论。三、讲解新课引入二次函数的定义:形如y=ax2+bx+c(a≠0,a,b,c为常数)的函数叫做二次函数。巩固对二次函数概念的理解:提问:1.上述概念中的a为什么不能是0?2.对于二次函数y=ax2+bx+c中的b和c可否为0?若b和c各自为0或均为0,上述函数的式子可以改写成怎样?你认为它们还是不是二次函数?思考:1.由问题1和2你认为判断二次函数的关键是什么?判断一个函数是否是二次函数的关键是:看二次项的系数是否为0.思考:2.二次函数的一般式y=ax2+bx+c(a≠0)与一元二次方程ax2+bx+c=0(a≠0)有什么联系和区别?联系(1)等式一边都是ax2+bx+c且a≠0(2)方程ax2+bx+c可以看成是函数y=ax2+bx+c中y=0时得到的.区别:前者是函数.后者是方程.等式另一边前者是y,后者是0四、例题分析例1:关于x的函数是二次函数,求m的值.解:由题意得:m2-m=2m+1≠0解得,m=2∴当m=2时,函数为二次函数例2.写出下列各函数关系,并判断它们是什么类型的函数(1)写出正方体的表面积S(cm2)与正方体棱长a(cm)之间的函数关系;(2)写出圆的面积y(cm2)与它的周长x(cm)之间的函数关系;(3)菱形的两条对角线的和为650px,求菱形的面积S(cm2)与一对角线长x(cm)之间的函数关系.解:(1)由题意得:S=6a2(a0)其中S是a的二次函数(2)由题意得:(x0)其中y是x的二次函数(3)由题意得其中S是x的二次函数例3:下列函数中,哪些是二次函数?(1)y=3x-1(不是)(2)y=3x2(是)(3)y=3x3+2x-2(是)(4)y=2x2-2x+1(是)(5)y=x-2+x(不是)(6)y=x2-x(1+x)(不是)例4.已知二次函数y=x²+px+q,当x=1时,函数值为4,当x=2时,函数值为-5,求这个二次函数的解析式.四、当堂训练1、(1)正方形边长为x(cm),它的面积y(cm2)是多少?(2)矩形的长是4厘米,宽是3厘米,如果将其长增加x厘米,宽增加2x厘米,则面积增加到y平方厘米,试写出y与x的关系式.2.下列函数中,哪些是二次函数?解:是、不是、是、不是3:m取何值时,函数y=(m+1)xm2—2m-1+(m-3)x+m是二次函数?解:根据题意得m2—2m-1=2且m+1≠0∴m=34、是否任何情况下二次函数中的自变量的取值范围都是任意实数呢?例如:圆的面积y()与圆的半径x(cm)的函数关系是y=πx2其中自变量x能取哪些值呢?5、要用长20m的铁栏杆,一面靠墙,围成一个矩形的花圃,设连墙的一边为x,巨形的面积为y,试(1)写出y关与x的函数关系式.(2)当x=3时,距形的面积为多少?解:(1)y=x(20-2x)=-2x2+20x(0x10)(2)y=42m课堂小结现在我们学习过的函数有:一次函数y=kx+b(k≠0),其中包括正比例函数y=kx(k≠0),反比例函函数(k≠0),二次函数y=ax2+bx+c(a≠0)。板书26.1二次函数26.1二次函数的定义:一、复习二、二次函数的定义形如y=ax2+bx+c(a≠0,a,b,c为常数)的函数叫做二次函数。三、例题分析例1例2例3四、课堂练习:1、2、3、4五、小结教学准备1.教学目标1.知识与技能能够用描点法作出函数y=ax2的图象,并根据图象认识和理解其性质2.过程与方法经历探索二次函数y=ax2的图象和性质的过程,体会数形结合的思想和方法.3.情感、态度与价值观在初步建立二次函数表达式与图象之间的联系中,体会数形结合与转化,体会数学内2.教学重点/难点重点:函数y=ax2的图象的画法,了解抛物线的含义,理解函数y=ax2的图象与性质.难点:用描点的方法准确地画出函数y=ax2的图象,掌握其性质特征.3.教学用具4.标签教学过程一、创设情境导入新课1、回忆一次函数和反比例函数的定义,图象特征,思考二次函数的图象又有何特征呢?2、展示(用课件或幻灯片)具有抛物线的实例让大家欣赏,议一议这与二次函数有何联系呢?3、用红色的乒乓球作投篮动作,观察乒乓球的运动路线,思考运动路线有何规律?怎样用数学规律来描述呢?二、新知探究1.函数y=ax2的图象画法及相关名称【探究l】画y=x2的图象学生动手实践、尝试画y=x2的图象教师分析,画图像的一般步骤:列表→描点→连线教师在学生完成图象后,在黑板上示范性画出y=x2的图象,如图22-1-1.【共同探究】次函数图像有何特征?特征如下:①形状是开口向上的抛物线②图象关于y轴对称③由最低点,没有最高点.结合图象介绍下列名称:①顶点;②对称轴;③开口及开口方向.2.函数y=ax2的图象特征及其性质【探究2】在同一坐标系中,画出y=x2,y=2x2的图象.学生自己完成此题.教师做个别指导,在学生(大部分)完成后,教师可示范性地画出两函数的图象.如图22-1-2比较图中三个抛物线的异同.相同点:①顶点相同,其坐标都为(0,0).②对称轴相同,都为y轴③开口方向相同,它们的开口方向都向上.不同点:开口大小不同.【练一练】画函数y=-x2,y=-x2,y=-2x2的图象.(分析:仿照探究1的实施过程)比较函数y=-x2,y=-x2,y=-2x2的图象.找出它们的异同点.相同点:①形状都是抛物线.②顶点相同,其坐标都为(0,0).③对称轴相同,都为y轴④开口方向相同,它们的开口方向都向下.不同点:开口大小不同.【归纳】y=ax2的图象特征:(1)二次函数y=ax2的图象是一条抛物线(2)抛物线y=ax2的对称轴是y轴.顶点时原点.a0时,抛物线开口向上,顶点时抛物形的最低点.a0时,抛物线开口向下,顶点时抛物形的最高点.(3)|a|越大,抛物线y==ax2的开口越小三、例题分析例1例1.已知抛物线y=ax2经过点A(-2,-8).(1)求此抛物线的函数解析式;(2)判断点B(-1,-4)是否在此抛物线上;(3)求出此抛物线上纵坐标为-6的点的坐标.解(1)把(-2,-8)代入y=ax2,得-8=a(-2)2,解得a=-2,所求函数解析式为y=-2x2.(2)因为,所以点B(-1,-4)不在此抛物线上.(3)由-6=-2x2,得x2=3,所以纵坐标为-6的点有两个,它们分别是的图象,并根据图象回答下列问题:(1)说出这两个函数图象的开口方向、对称轴和顶点坐标;轴上方;当x0时,曲线自左向右逐渐________;它的顶点是图象的最________点;(3)函数y=-2x2,对于一切x的值,总有函数值y_____0;当x0时,y随x的增大而________;当x________时,y有最________值为________.解:列表:四、当堂训练:2、抛物线,其对称轴左侧,y随x的增大而增大;在对称轴的右侧,y随x的增大而减小.3.填空:(1)抛物线y=2x2的顶点坐标是(0,0),对称轴是y轴,在对称轴的右侧,y随着x的增大而增大;在对称轴的左侧,y随着x的增大而减小,当x=0时,函数y的值最小,最小值是0,抛物线y=2x2在x轴的上方(除顶点外).(2)抛物线在x轴的下方(除顶点外),在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x的增大而减小,当x=0时,函数y的值最大,最大值是0,当x0时,y0.4.在同一坐标系中,图象与y=2x2的图象关于x轴对称的函数为().5.抛物线共有的性质是(B).(A)开口向上(B)对称轴是y轴(C)都有最高点(D)y随x的增大而增大6.若点A(2,m)在抛物线y=x2上,则点A关于y轴对称点的坐标是().(A)(2,4)(B)(-2,4)(C)(2,-4)(D)(-2,-4)7、观察函数y=x2的图象,则下列判断中正确的是()(A)若a,b互为相反数,则x=a与x=b的函数值相等(B)对于同一个自变量x,有两个函数值与它对应(C)对任一个实数y,有两个x和它对应.(D)对任意实数x,都有y>0.课堂小结1.本节所学知识:①二次函数y=ax2的图象的画法.②二次函数y=ax2的图象特征及其性质.一般地,抛物线y=ax2的对称轴是y轴,顶点是原点.当a>0时,抛物线开口向上,顶点是抛物线的最低点;当a<0时,抛物线开口向下,顶点是抛物线的最高点.对于抛物线y=ax2,|a|越大,抛物线的开口越小.如果a>0,当x<0时,y随x的增大而减小,当x>0时,y随x的增大而增大;如果a<0,当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小.板书26.1.2二次函数y=ax2的图象和性质一、图象的画法:1、列表2、描点3、连线二、图象和性质图象:是一条抛物线性质:一般地,抛物线y=ax2的对称轴是y轴,顶点是原点.当a>0时,抛物线开口向上,顶点是抛物线的最低点;当a<0时,抛物线开口向下,顶点是抛物线的最高点.对于抛物线y=ax2,|a|越大,抛物线的开口越小.如果a>0,当x<0时,y随x的增大而减小,当x>0时,y随x的增大而增大;如果a<0,当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小.三、例题分析例1、例2四、小结教学准备1.教学目标知识和能力1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。过程和方法让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。2.教学重点/难点教学重点用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标3.教学用具多媒体4.标签教学过程一、提出问题、引入新课1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?(函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1)。2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?(函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的)3.函数y=-4(x-2)2+1具有哪些性质?(当x<2时,函数值y随x的增大而增大,当x>2时,函数值y随x的增大而减小;当x=2时,函数取得最大值,最大值