第1页(共14页)2016-2017学年山东省德州市宁津县九年级(上)第一次月考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.用配方法解下列方程,配方正确的是()A.2y2﹣4y﹣4=0可化为(y﹣1)2=4B.x2﹣2x﹣9=0可化为(x﹣1)2=8C.x2+8x﹣9=0可化为(x+4)2=16D.x2﹣4x=0可化为(x﹣2)2=42.关于x的一元二次方程(m﹣2)x2+5x+m2﹣2m=0的常数项为0,则m的值为()A.1B.2C.1或2D.03.把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为()A.y=2(x+3)2+4B.y=2(x+3)2﹣4C.y=2(x﹣3)2﹣4D.y=2(x﹣3)2+44.某种商品经过连续两次涨价后的价格比原来上涨了44%,则这种商品的价格的平均增长率是()A.44%B.22%C.20%D.18%5.已知抛物线y=ax2+bx,当a>0,b<0时,它的图象经过()A.一,二,三象限B.一,二,四象限C.一,三,四象限D.一,二,三,四象限6.在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A.B.C.D.7.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k>﹣1且k≠0C.k<1D.k<1且k≠08.已知α,β是方程x2+2006x+1=0的两个根,则(1+2008α+α2)(1+2008β+β2)的值为()A.1B.2C.3D.49.已知(x2+y2+1)(x2+y2+3)=8,则x2+y2的值为()A.﹣5或1B.1C.5D.5或﹣110.如果抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是3,那么c的值等于()A.8B.14C.8或14D.﹣8或﹣1411.对称轴平行于y轴的抛物线的顶点为点(2,3)且抛物线经过点(3,1),那么抛物线解析式是()A.y=﹣2x2+8x+3B.y=﹣2x‑2﹣8x+3C.y=﹣2x2+8x﹣5D.y=﹣2x‑2﹣8x+212.若二次函数y=ax2+bx+a2﹣2(a,b为常数)的图象如图,则a的值为()第2页(共14页)A.﹣2B.﹣C.1D.二、填空题(共5小题,每小题4分,满分20分)13.如图所示,在同一平面直角坐标系中,作出①y=﹣3x2,②y=﹣,③y=﹣x2的图象,则从里到外的三条抛物线对应的函数依次是(填序号)14.方程x2+6x+3=0的两个实数根为x1,x2,则+=.15.已知三角形的两边长分别是4和7,第三边是方程x2﹣16x+55=0的根,则第三边长是.16.二次函数y=x2﹣2x的图象上有A(x1,y1)、B(x2,y2)两点,若1<x1<x2,则y1与y2的大小关系是.17.如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a﹣b+c的值为.三、解答题(共7小题,满分64分)18.解方程:(1)4x2﹣6x﹣3=0(2)(2x﹣3)2=5(2x﹣3)19.求证:方程2x2+3(m﹣1)x+m2﹣4m﹣7=0对于任何实数m,永远有两个不相等的实数根.20.已知二次函数y=ax2+b的图象与直线y=x+2相交于点A(1,m)和点B(n,0).(1)试确定二次函数的解析式;(2)在给出的平面直角坐标系中画出这个函数图象的草图,并结合图象直接写出ax2+b>x+2时x的取值范围.第3页(共14页)21.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?22.已知关于x的方程k2x2+(2k﹣1)x+1=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由.23.一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图2所示),其表达式是y=ax2+c的形式.请根据所给的数据求出a,c的值.(2)求支柱MN的长度.(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.24.某商场老板对一种新上市商品的销售情况进行记录,已知这种商品进价为每件40元,经过记录分析发现,当销售单价在40元至90元之间(含40元和90元)时,每月的销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数,其图象如图所示.(1)求y与x的函数关系式.(2)设商场老板每月获得的利润为P(元),求P与x之间的函数关系式;(3)如果想要每月获得2400元的利润,那么销售单价应定为多少元?第4页(共14页)第5页(共14页)2016-2017学年山东省德州市宁津县九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.用配方法解下列方程,配方正确的是()A.2y2﹣4y﹣4=0可化为(y﹣1)2=4B.x2﹣2x﹣9=0可化为(x﹣1)2=8C.x2+8x﹣9=0可化为(x+4)2=16D.x2﹣4x=0可化为(x﹣2)2=4【考点】解一元二次方程-配方法.【分析】利用完全平方公式的结构特点判断即可得到结果.【解答】解:A、2y2﹣4y﹣4=0可化为(y﹣1)2=5,故选项错误;B、x2﹣2x﹣9=0可化为(x﹣1)2=10,故选项错误;C、x2+8x﹣9=0可化为(x+4)2=25,故选项错误;D、x2﹣4x=0可化为(x﹣2)2=4,故选项正确.故选D.2.关于x的一元二次方程(m﹣2)x2+5x+m2﹣2m=0的常数项为0,则m的值为()A.1B.2C.1或2D.0【考点】一元二次方程的一般形式.【分析】根据一元二次方程的定义可知m﹣2≠0,再根据常数项为0,即可得到m2﹣2m=0,列出方程组求解即可.【解答】解:∵关于x的一元二次方程(m﹣2)x2+5x+m2﹣2m=0的常数项为0,∴,解m﹣2≠0得m≠2;解m2﹣2m=0得m=0或2.∴m=0.故选D.3.把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为()A.y=2(x+3)2+4B.y=2(x+3)2﹣4C.y=2(x﹣3)2﹣4D.y=2(x﹣3)2+4【考点】二次函数图象与几何变换.【分析】抛物线y=2x2的顶点坐标为(0,0),则把它向左平移3个单位,再向上平移4个单位,所得抛物线的顶点坐标为(﹣3,4),然后根据顶点式写出解析式.【解答】解:把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数解析式为y=2(x+3)2+4.故选A.第6页(共14页)4.某种商品经过连续两次涨价后的价格比原来上涨了44%,则这种商品的价格的平均增长率是()A.44%B.22%C.20%D.18%【考点】一元二次方程的应用.【分析】设这种商品的价格的平均增长率为x,根据题意列出关于x的方程,求出方程的解即可得到结果.【解答】解:设这种商品的价格的平均增长率为x,根据题意得:(1+x)2=1+44%,开方得:1+x=±1.2,解得:x1=0.2,x2=﹣2.2(舍去),则这种商品的价格的平均增长率为20%.故选C5.已知抛物线y=ax2+bx,当a>0,b<0时,它的图象经过()A.一,二,三象限B.一,二,四象限C.一,三,四象限D.一,二,三,四象限【考点】二次函数图象与系数的关系.【分析】由a>0可以得到开口方向向上,由b<0,a>0可以推出对称轴x=﹣>0,由c=0可以得到此函数过原点,由此即可确定可知它的图象经过的象限.【解答】解:∵a>0,∴开口方向向上,∵b<0,a>0,∴对称轴x=﹣>0,∵c=0,∴此函数过原点.∴它的图象经过一,二,四象限.故选B.6.在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】根据二次函数的开口方向,与y轴的交点;一次函数经过的象限,与y轴的交点可得相关图象.【解答】解:∵一次函数和二次函数都经过y轴上的(0,c),∴两个函数图象交于y轴上的同一点,故B选项错误;当a>0时,二次函数开口向上,一次函数经过一、三象限,故C选项错误;当a<0时,二次函数开口向下,一次函数经过二、四象限,故A选项错误;故选:D.第7页(共14页)7.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k>﹣1且k≠0C.k<1D.k<1且k≠0【考点】根的判别式;一元二次方程的定义.【分析】根据根的判别式及一元二次方程的定义得出关于k的不等式组,求出k的取值范围即可.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴,即,解得k>﹣1且k≠0.故选B.8.已知α,β是方程x2+2006x+1=0的两个根,则(1+2008α+α2)(1+2008β+β2)的值为()A.1B.2C.3D.4【考点】根与系数的关系;一元二次方程的解.【分析】α,β是方程x2+2006x+1=0的两个根,由方程根的意义及根与系数关系,可得出四个等式:α2+2006α+1=0,β2+2006β+1=0,α+β=﹣2006,α•β=1,再根据(1+2008α+α2)(1+2008β+β2)=4α•β代值即可.【解答】解:∵α,β是方程x2+2006x+1=0的两个根,∴α2+2006α+1=0,β2+2006β+1=0.且α•β=1.由此可得:1+2008α+α2=2α,1+2008β+β2=2β.∴(1+2008α+α2)(1+2008β+β2)=4α•β=4.故选D9.已知(x2+y2+1)(x2+y2+3)=8,则x2+y2的值为()A.﹣5或1B.1C.5D.5或﹣1【考点】换元法解一元二次方程;解一元二次方程-因式分解法.【分析】解题时把x2+y2当成一个整体来考虑,再运用因式分解法就比较简单.【解答】解:原方程变形得,(x2+y2)2+4(x2+y2)﹣5=0,(x2+y2+5)(x2+y2﹣1)=0,又∵x2+y2的值是非负数,∴x2+y2的值为只能是1.故选:B.10.如果抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是3,那么c的值等于()A.8B.14C.8或14D.﹣8或﹣14【考点】待定系数法求二次函数解析式.【分析】根据题意,知顶点的纵坐标是3或﹣3,列出方程求出解则可.【解答】解:根据题意=±3,解得c=8或14.故选C.第8页(共14页)11.对称轴平行于y轴的抛物线的顶点为点(2,3)且抛物线经过点(3,1),那么抛物线解析式是()A.y=﹣2x2+8x+3B.y=﹣2x‑2﹣8x+3C.y=﹣2x2+8x﹣5D.y=﹣2x‑2﹣8x+2【考点】待定系数法求二次函数解析式.【分析】已知抛物线的顶点坐标,把经过的点的坐标代入顶点坐标式求出系数则可.【解答】解:根据题意,设y=a(x﹣2)2+3,抛物线经过点(3,1),所以a+3=1,a=﹣2.因此抛物线的解析式为:y=﹣2(x﹣2)2+3=﹣2x2+8x﹣5.故本题选C.12.若二次函数y=ax2+bx+a2﹣2(a,b为常数)的图象如图,则a的值为()A.﹣2B.﹣C.1D.【考点】二次函数图象与系数的关系.【分析】由抛物线与y轴的交点判断c与0的关系,进而得出a2﹣2的值,然后求出a值,再根据开口方向选择正确答案.【解答】解:由图象可知:抛物线与y轴的交于原点,所以,a2﹣2=0,解得a=±,由抛物线的开口向上所以a>0,∴a=﹣舍去,即a=.故选D.二、填空题(共5小题,每小题4分,满分20分)13.如图所示,在同一平面直角坐标系中,作出①y=﹣3x2,②y=﹣,③y=﹣x2的图象,则从里到外的三条抛物线对应的函数依次