21.3实际问题与一元二次方程第二十一章一元二次方程导入新课讲授新课当堂练习课堂小结九年级数学上(RJ)教学课件第3课时几何图形与一元二次方程学习目标1.掌握面积法建立一元二次方程的数学模型.(难点)2.能运用一元二次方程解决与面积有关的实际问题.(重点)导入新课问题某小区规划在一个长30m、宽20m的长方形土地上修建三条等宽的通道,使其中两条与AB平行,另外一条与AD平行,其余部分种花草,要使每一块花草的面积都为78m2,那么通道宽应该设计为多少?设通道宽为xm,则由题意列的方程为_____________________.CBDA(30-2x)(20-x)=6×78问题引入讲授新课几何图形与一元二次方程一例1要设计一本书的封面,封面长27㎝,宽21cm正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度?(精确到0.1cm)27cm21cm典例精析分析:这本书的长宽之比:正中央的矩形长宽之比:,上下边衬与左右边衬之比:.979727cm21cm解:设中央长方形的长和宽分别为9a和7a由此得到上下边衬宽度之比为:11(279):(217)22aa979(3):7(3)9:7.aa27cm21cm解:设上下边衬的9xcm,左右边衬宽为7xcm依题意得3(2718)(2114)2721,4xx解方程得633.4x故上下边衬的宽度为:63391.8,4故左右边衬的宽度为:63371.4.4方程的哪个根合乎实际意义?为什么?答:上下边衬的宽度为:1.8cm,左右边衬的宽度为:1.4cm.试一试如果换一种设未知数的方法,是否可以更简单地解决上面的问题?解:设正中央的矩形两边别为9xcm,7xcm。依题意得27cm21cm3972721,4xx解得22333322xx,(舍去).故上下边衬的宽度为:332792795427321.8.224x332172174221321.4.224x故左右边衬的宽度为:(1)主要集中在几何图形的面积问题,这类问题的面积公式是等量关系.如果图形不规则应割或补成规则图形,找出各部分面积之间的关系,再运用规则图形的面积公式列出方程;(2)与直角三角形有关的问题:直角三角形两直角边的平方和等于斜边的平方是这类问题的等量关系,即用勾股定理列方程.方法点拨例2:如图,在一块长为92m,宽为60m的矩形耕地上挖三条水渠,水渠的宽都相等,水渠把耕地分成面积均为885m2的6个矩形小块,水渠应挖多宽?分析:设水渠宽为xm,将所有耕地的面积拼在一起,变成一个新的矩形,长为(92–2x)m,宽(60-x)m.解:设水渠的宽应挖xm.(92-2x)(60-x)=6×885.解得x1=105(舍去),x2=1.注意:结果应符合实际意义我们利用“图形经过移动,它的面积大小不会改变”的性质,把纵、横两条路移动一下,使列方程容易些(目的是求出水渠的宽,至于实际施工,仍可按原图的位置修路).方法点拨当堂练习1.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是()A.x2+130x-1400=0B.x2+65x-350=0C.x2-130x-1400=0D.x2-65x-350=080cmxxxx50cmB2.某农场要建一个长方形的养鸡场,养鸡场的一边靠墙(墙长25m),另外三边用木栏围成,木栏长40m.(1)养鸡场的面积能达到180m2吗?如果能,请给出设计方案;如果不能,请说明理由.25m180m2解:设养鸡场的长为xm,根据题意得:即x2-40x+360=0.解方程,得x1=x2=(舍去),答:鸡场的为()m满足条件.x3.如图1,在宽为20米,长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540平方米,求道路的宽.解:设道路宽为x米,由平移得到图2,则宽为(20-x)米,长为(32-x)米,列方程得(20-x)(32-x)=540,整理得x2-52x+100=0,解得x1=50(舍去),x2=2.答:道路宽为2米.图1图2课堂小结几何图形与一元二次方程问题几何图形常见几何图形面积是等量关系.类型课本封面问题彩条宽度问题常采用图形平移能聚零为整方便列方程见《学练优》本课时练习课后作业