初中数学【9年级上】21.2.4 一元二次方程的根与系数的关系 (9)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

21.2解一元二次方程第二十一章一元二次方程导入新课讲授新课当堂练习课堂小结九年级数学上(RJ)教学课件21.2.4一元二次方程的根与系数的关系学习目标1.探索一元二次方程的根与系数的关系.(难点)2.不解方程利用一元二次方程的根与系数的关系解决问题.(重点)导入新课复习引入1.一元二次方程的求根公式是什么?224(40)2bbacxbaca想一想:方程的两根x1和x2与系数a,b,c还有其它关系吗?2.如何用判别式b2-4ac来判断一元二次方程根的情况?对一元二次方程:ax2+bx+c=0(a≠0)b2-4ac0时,方程有两个不相等的实数根.b2-4ac=0时,方程有两个相等的实数根.b2-4ac0时,方程无实数根.讲授新课探索一元二次方程的根与系数的关系一算一算解下列方程并完成填空:(1)x2+3x-4=0;(2)x2-5x+6=0;(3)2x2+3x+1=0.一元二次方程两根关系x1x2x2+3x-4=0x2-5x+6=02x2+3x+1=0-412312-1x1+x2=-3x1·x2=-4x1+x2=5x1·x2=6231022xx1232xx1212xx猜一猜(1)若一元二次方程的两根为x1,x2,则有x-x1=0,且x-x2=0,那么方程(x-x1)(x-x2)=0(x1,x2为已知数)的两根是什么?将方程化为x2+px+q=0的形式,你能看出x1,x2与p,q之间的关系吗?重要发现如果方程x2+px+q=0的两根是x1,x2,那么x1+x2=-p,x1·x2=q.(x-x1)(x-x2)=0.x2-(x1+x2)x+x1·x2=0,x2+px+q=0,x1+x2=-p,x1·x2=q.猜一猜(2)如果一元二次方程ax2+bx+c=0(a≠0)的两个根分别是x1、x2,那么,你可以发现什么结论?12bxxa12cxxa22124422bbacbbacxxaa22442bbacbbaca22ba.ba证一证:22124422bbacbbacxxaa22244bbaca244aca.ca一元二次方程的根与系数的关系(韦达定理)如果一元二次方程ax2+bx+c=0(a≠0)的两个根分别是x1、x2,那么12bx+x=-a12cxxa注意满足上述关系的前提条件b2-4ac≥0.1.x2-2x-15=0;例1口答下列方程的两根之和与两根之积.2.x2-6x+4=0;3.2x2+3x-5=0;4.3x2-7x=0;5.2x2=5.x1+x2=-p,x1·x2=q.x1+x2=2,x1·x2=-15.x1+x2=6,x1·x2=4.235+-=022xx12123522xxxx,1212703xxxx,22-50x1212502xxxx,ax2+bx+c=0(a≠0)两边都除以a20bcxxaa12bxxa12cxxa一元二次方程的根与系数的关系的应用二典例精析121.3xx121xx1222.3xx1233.2xx124.0xx1223xx1213xx120xx下列方程的两根和与两根积各是多少?⑴x2-3x+1=0;⑵3x2-2x=2;⑶2x2+3x=0;⑷3x2=1.在使用根与系数的关系时:(1)不是一般式的要先化成一般式;(2)在使用x1+x2=-时,“-”不要漏写.ba注意例2已知方程5x2+kx-6=0的一个根是2,求它的另一个根及k的值.解:设方程5x2+kx-6=0的两个根分别是x1、x2,其中x1=2.所以:x1·x2=2x2=即:x2=由于x1+x2=2+=得:k=-7.答:方程的另一个根是,k=-7.,5k3.53()5356,5已知方程3x2-18x+m=0的一个根是1,求它的另一个根及m的值.解:设方程3x2-18x+m=0的两个根分别是x1、x2,其中x1=1.所以:x1+x2=1+x2=6,即:x2=5.由于x1·x2=1×5=得:m=15.答:方程的另一个根是5,m=15.,3m例3不解方程,求方程2x2+3x-1=0的两根的平方和、倒数和.121231,.22xxxx解:根据根与系数的关系可知:22212112212,xxxxxx∵2221212122xxxxxx231132;224121212113123.22xxxxxx设x1,x2为方程x2-4x+1=0的两个根,则:(1)x1+x2=,(2)x1·x2=,(3),(4).411412221)(xx2221xx总结常见的求值:12111.xx1212;xxxx124.(1)(1)xx1212()1;xxxx12213.xxxx221212xxxx2121212()2;xxxxxx125.xx212()xx21212()4.xxxx2221212122.()2;xxxxxx求与方程的根有关的代数式的值时,一般先将所求的代数式化成含两根之和,两根之积的形式,再整体代入.归纳当堂练习1.如果-1是方程2x2-x+m=0的一个根,则另一个根是___,m=____.2.已知一元二次方程x2+px+q=0的两根分别为-2和1,则:p=,q=.1-232-33.已知x1,x2是方程2x2+2kx+k-1=0的两个根,且(x1+1)(x2+1)=4;(1)求k的值;(2)求(x1-x2)2的值.解:(1)根据根与系数的关系所以(x1+1)(x2+1)=x1x2+(x1+x2)+1=解得:k=-7;12,xxk121.2kxx1()14,2kk(2)因为k=-7,所以则:124.xx127,xx222121212()()474(4)65.xxxxxx课堂小结根与系数的关系(韦达定理)内容如果方程x2+px+q=0的两根是x1,x2,那么x1+x2=-p,x1·x2=q.如果一元二次方程ax2+bx+c=0(a≠0)的两个根分别是x1、x2,那么应用常见变形222121212()2xxxxxx22121212()()4xxxxxx12121211xxxxxx12bxxa12cxxa见《学练优》本课时练习课后作业

1 / 20
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功