21.3实际问题与一元二次方程第2课时1.了解几种特殊图形的面积公式.2.掌握面积法建立一元二次方程的数学模型,并运用它解决实际问题.1.列方程解应用题有哪些步骤?对于这些步骤,应通过解各种类型的问题,才能深刻体会与真正掌握列方程解应用题.上一节,我们学习了解决“平均增长(下降)率问题”,现在,我们要学习解决“面积、体积问题”.2.直角三角形的面积公式是什么?一般三角形的面积公式是什么呢?3.正方形的面积公式是什么呢?长方形的面积公式又是什么?4.梯形的面积公式是什么?5.菱形的面积公式是什么?6.平行四边形的面积公式是什么?7.圆的面积公式是什么?【例1】要设计一本书的封面,封面长27㎝,宽21㎝,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度?27【解析】这本书的长宽之比是9:7,依题知正中央的矩形两边之比也为9:7.例题解法一:设正中央的矩形两边分别为9xcm,7xcm依题意得21274379xx解得2331x8.143275422339272927x4.143214222337212721x不合题意,舍去)(2332x左右边衬的宽度为:故上下边衬的宽度为:212743)1421)(1827(xx解方程得4336x(以下请自己完成)方程的哪个根合乎实际意义?为什么?解法二:设上下边衬的宽为9xcm,左右边衬宽为7xcm,依题意得【例2】学校为了美化校园环境,在一块长40米、宽20米的长方形空地上计划新建一块长9米、宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案.(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.例题【解析】(1)方案1:长为米,宽为7米;719方案2:长为16米,宽为4米;方案3:长=宽=8米;注:本题方案有无数种(2)在长方形花圃周长不变的情况下,长方形花圃面积不能增加2平方米.由题意得长方形长与宽的和为16米.设长方形花圃的长为x米,则宽为(16-x)米.x(16-x)=63+2,x2-16x+65=0,22b4ac(16)416540∴此方程无解.∴在周长不变的情况下,长方形花圃的面积不能增加2平方米1.用20cm长的铁丝能否折成面积为30cm2的矩形,若能够,求它的长与宽;若不能,请说明理由.【解析】设这个矩形的长为xcm,则宽为cm,)220(x30)220(xx即x2-10x+30=0这里a=1,b=-10,c=30,0203014)10(422acb∴此方程无解.∴用20cm长的铁丝不能折成面积为30cm2的矩形.跟踪训练2.某校为了美化校园,准备在一块长32米,宽20米的长方形场地上修筑若干条道路,余下部分作草坪,并请全校同学参与设计,现在有两位学生各设计了一种方案(如图),根据两种设计方案各列出方程,求图中道路的宽分别是多少?使图(1),(2)的草坪面积为540米2.(1)(2)(1)【解析】(1)如图,设道路的宽为x米,则540)220)(232(xx化简得,025262xx0)1)(25(xx1,2521xx其中的x=25超出了原矩形的宽,应舍去.∴图(1)中道路的宽为1米.则横向的路面面积为(2)解析:此题的相等关系是矩形面积减去道路面积等于540米2.解法一、如图,设道路的宽为x米,32x米2,纵向的路面面积为20x米2.注意:这两个面积的重叠部分是x2,所列的方程是不是3220(3220)540xx?图中的道路面积不是3220xx米2.(2)而是从其中减去重叠部分,即应是m2所以正确的方程是:232203220540xxx化简得,2521000,xx其中的x=50超出了原矩形的长和宽,应舍去.取x=2时,道路总面积为:草坪面积=32×20-100=540(米2)答:所求道路的宽为2米.122,50xx)2032(2xxx22(3220)22100()米解法二:我们利用“图形经过移动,它的面积大小不会改变”的道理,把纵、横两条路移动一下,使列方程容易些(目的是求出路面的宽,至于实际施工,仍可按原图的位置修路)(2)横向路面:如图,设路宽为x米,32x米2纵向路面面积为:20x米2草坪矩形的长(横向)为:草坪矩形的宽(纵向:)为:相等关系是:草坪长×草坪宽=540米2(20-x)米(32-x)米即3220540.xx化简得:212521000,50,2xxxx再往下的计算、格式书写与解法1相同.1.如图是宽为20米,长为32米的矩形耕地,要修筑同样宽的三条道路(两条纵向,一条横向,且互相垂直),把耕地分成六块大小相等的试验地,要使试验地的面积为570平方米,问:道路宽为多少米?【解析】设道路宽为x米,570)220)(232(xx化简得,035362xx0)1)(35(xx1,3521xx其中的x=35超出了原矩形的宽,应舍去.答:道路的宽为1米.则2.如图,长方形ABCD,AB=15m,BC=20m,四周外围环绕着宽度相等的小路,已知小路的面积为246m2,求小路的宽度.ABCD化简得,01233522xx0)412)(3(xx241,321xx其中x=-20.5应舍去.答:小路的宽为3米.【解析】设小路宽为x米,则2015246)215)(220(xx3.如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S米2,(1)求S与x的函数关系式;(2)如果要围成面积为45米2的花圃,AB的长是多少米?【解析】(1)设宽AB为x米,则BC为(24-3x)米,这时面积S=x(24-3x)=-3x2+24x(2)由条件-3x2+24x=45化为:x2-8x+15=0解得x1=5,x2=3∵0<24-3x≤10得≤x<8∴x2不合题意,AB=5,即花圃的宽AB为5米1434.(绍兴·中考)某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元?【解析】(1)24间;(2)10.5或15万元.1.列一元二次方程解应用题的步骤与列一元一次方程解应用题的步骤类似,即审、设、列、解、检、答.2.这里要特别注意:在列一元二次方程解应用题时,由于所得的根一般有两个,所以要检验这两个根是否符合实际问题的要求.通过本课时的学习,需要我们掌握: