2023年数学课程心得体会范文_课程数学心得体会范文【通用8篇】

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1/262023年数学课程心得体会范文_课程数学心得体会范文【通用8篇】当我们经历一段特殊的时刻,或者完成一项重要的任务时,我们会通过反思和总结来获取心得体会。好的心得体会对于我们的帮助很大,所以我们要好好写心得体会以下是网友帮大家分享的“2023年数学课程心得体会范文_课程数学心得体会范文【通用8篇】”,欢迎大家借鉴与参考,希望对您的写作有所帮助。数学课程心得体会【第一篇】一、背景和意义。19世纪末,20世纪初,一些心理学家首先对问题解决进行了研究,并对“问题解决”作了诸多的阐释。在国际数学教育界,从美国的波利亚首先对怎样解题作了详尽的探讨开始,逐渐对这个问题展开了研究。尤其是在美国,从60年代“新数运动”过分强调数学的抽象结构,忽视数学与实际的联系,脱离教学实际,到70年代“回到基幢走向另一个极端,片面强调掌握低标准的基础知识,数学教学水平普遍下降。在对于数学教育发展方向作了长期探索以后,“问题解决”和“大众数学(mathematicsforal)”已经成为美国数学教育的响亮口号,并产生国际影响。什么是问题解决,由于观察的角度不同,至今仍然没有完2/26全统一的认识。有的认为,问题解决指的是人们在日常生活和社会实践中,面临新情景、新课题,发现它与主客观需要的矛盾而自己却没有现成对策时,所引起的寻求处理问题办法的一种心理活动。有的把学习分成八种类型:信号学习、……概念学习、法则学习和问题解决。问题解决是其中最高级和复杂的一种类型,意味着以独特的方式选择多组法则,并且把它们综合起来运用,它将导致建立起学习者先前不知道的更高级的一组法则。英国学校数学教育调查委员会报告《数学算数》则认为:把数学应用于各种情形的能力就是“问题解决”。全美数学教师理事会《行动的议程》对问题解决的意义作了如下说明:第一,问题解决包括将数学应用于现实世界,包括为现时和将来出现的科学理论与实际服务,也包括解决拓广数学科学本身前沿的问题;第二,问题解决从本质上说是一种创造性的活动;第三,问题解决能力的发展,其基础是虚心、好奇和探索的态度,是进行试验和猜测的意向;等等。从上述对问题解决意义的阐述中,我们可以看到一些共性和相通之处。从数学教育的角度来看,问题解决中所指的问题来自两个方面:现实社会生活和生产实际,数学学科本身。问题的一个重要特征是其对于解决问题者的新颖性,使得问题解决者没有现成的对策,因而需要进行创造性的工作。要顺利地进行问题解决,其前提是已经了解、掌握所需要的基础知识、基本技能和能力,在问题解决中要综合地运用这些基础知识、3/26基本技能和能力。在问题解决中,问题解决者的态度是积极的。此外,在学校数学教学中,所谓创造性地解决问题,有别于数学家的创造性工作,主要指学习中的再创造。因而,笔者认为,从数学教育的角度看,问题解决的意义是:以积极探索的态度,综合运用已具有的数学基础知识、基本技能和能力,创造性地解决来自数学课或实际生活和生产实际中的新问题的学习活动。简言之,就数学教育而言,问题解决就是创造性地应用数学以解决问题的学习活动。问题解决中,问题本身常具有非常规性、开放性和应用性,问题解决过程具有探索性和创造性,有时需要合作完成。二、“问题解决”的重要性。问题解决已引起国内外数学教育界的广泛重视,把它和数学课程紧密联系起来,已是国际数学教育的一个趋势。究其原因,笔者认为主要有以下几方面:(一)时代呼唤创新。在国际竞争日益激烈的当今世界,各国政府乃至普通老百姓都越来越清楚认识到,国家的富强,乃至企业的兴衰,无不取决于对科学技术知识的学习、掌握及其创造性的开拓和应用。但创造能力并非与生俱有,必须通过有意识的学习和训练才能形成。学校教育必须重视培养学生应用所学知识进行创造性工作的能力。问题解决正反映了这种社会需要。(二)我国数学教育的成功和不足。4/26我国的中学数学教学与国际上其它一些国家的中学数学教学比较,具有重视基础知识教学,基本技能训练,数学计算、推理和空间想象能力的培养等显著特点,因而我国中学生的数学基本功比较扎实,学生的整体数学水平较高。然而,改革开放也使我国数学教育界看到了我国中学数学教学的一些不足。其中比较突出的两个问题是,学生应用数学的意识不强,创造能力较弱。学生往往不能把实际问题抽象成数学问题,不能把所学的`数学知识应用到实际问题中去,对所学数学知识的实际背景了解不多;学生机械地模仿一些常见数学问题解法的能力较强,而当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的科学思维方法了解不够。面对这种情况,我国数学教育界采取了一些相应措施。例如,北京、上海等地分别开展了中学生数学应用竞赛,在近年高校招生数学考试中,也加强了对学生应用数学意识和创造性思维方法与能力的考查等。虽然这些措施收到了一定的成效,然而要从根本上改变现状,还应在中学数学课程设计上有所突破。一些学者认为,在中学数学课程中体现问题解决的思想,是解决上述问题的有效途径。(三)数学观的发展。数学发展至今,人们对数学的总的看法由相对静态的观点转向静态和动态相结合的观点。对于数学是什么,经典的是恩格斯的定义:数学是研究现实世界空间形式和数量关系的科学。恩格斯对数学的观点是相对静止的,它主要指出了数学的客观5/26真理性,然而,当今的社会实践告诉人们还应该用动态的观点去认识数学,即从数学与人类实践的关系去认识数学。就数学教育而言,学生之所以要学习数学,除了数学的客观真理性,更在于数学是改造客观世界的重要工具。学数学,首先是为了应用。应用数学是学数学的出发点和归宿。所以,数学教学的主要任务是教给学生在实际生活和生产实践中最有用的数学基础知识,并在教学过程中有意识地培养学生应用这些知识分析和解决实际问题的能力。(四)问题解决过程和方法的一般性。在解决来自实际和数学内部的数学问题中,问题解决的过程和方法是基本相同的。不仅如此,这种过程和方法与解决一般的、其它学科中问题的过程和方法有很多共同之处。在数学问题解决中学习的过程和方法可以迁移到其它学科的问题解决过程中。此外,相对于其它学科的问题来学,解决数学问题所需要的工具和材料要少得多,有时只需要一支笔,一张纸。因而通过数学问题解决,可以较快地教给学生一般的问题解决的过程和思想方法,具有较高的效率。三、“问题解决”和中学数学课程。实际情况出发,重要的是在中学数学课程中去体现问题解决的思想精髓,这就是它所强调的创造能力和应用意识。就是说,在中学数学课程中应强调以下几点:(一)鼓励学生去探索、猜想、发现。要培养学生的创造能力,首先是要让学生具有积极探索的6/26态度,猜想、发现的欲望。教材要设法鼓励学生去探索、猜想和发现,培养学生的问题意识,经常地启发学生去思考,提出问题。学生学习的过程本身就是一个问题解决的过程。当学生学习一门崭新的课程、一章新的知识、乃至一个新的定理和公式时,对学生来说,就是面临一个新问题。例如,高中数学课是在学生学习了初中代数、几何课以后开设的,学生对数学已经有比较丰富的感性认识,教科书中是否可以提出,或者说应该教学生提出以下的一些问题:高中数学课是怎样的一门课?高中数学课和小学数学、初中代数、初中几何课有什么关系?数学是怎样的一门科学?这门科学是怎样产生和发展起来的?高中数学将要学习哪些知识?这些知识在实际中有什么用?这些知识和以后将要学习的数学知识、高中其它学科知识有些什么关系,有怎样的地位作用?要学好高中数学应注意些什么问题?当然,对这些问题,即使是学完整个高中数学课程以后,也不一定能完全回答好,但在学这门课之前还是要引导学生去思考这些问题,这也正是教科书编者所要考虑并应该尽可能在教科书中回答的。笔者认为,在高中数学课中可以安排一个引言课。同样,在每一章,乃至每一单元都应该考虑类似的问题。在这一点,初中《几何》的引言值得参考。在教科书中经常提一些启发性的问题,就会让学生逐步养成求知、好问的习惯和独立思考、勇于探索的精神。无论是教科书的编写还是实际教学,在讲到探索、猜想、7/26发现方面的问题时要侧重于“教”:有时候可以直接教给学生完整的猜想过程,有时候则要较多地启发、诱导、点拨学生。不要在任何时候都让学生亲自去猜想、发现,那样要花费太多的教学时间,降低教学效率。此外,在探索、猜想、发现的方向上,要把好舵,不要让学生在任意方向上去费劲。(二)打好基础。这里的基础有两重含义:首先,中学教育是基础教育,许多知识将在学生进一步学习中得到应用,有为学生进一步深造打基础的任务,因而不能要求所学的知识立即在实际中都能得到应用。其次,要解决任何一个问题,必须有相关的知识和基本的技能。当人们面临新情景、新问题,试图去解决它时,必须把它与自己已有知识联系起来,当发现已有知识不足以解决面临的新问题时,就必须进一步学习相关的知识,训练相关的技能。应看到,知识和技能是培养问题解决能力的必要条件。在提倡问题解决的时候,不能削弱而要更加重视数学基础知识的教学和基本技能的训练。教给学生哪些最重要的数学基础知识和基本技能,是问题的关系。目前,《全日制普通高级中学数学教学大纲(供试验用)》中关于课程内容的确定,已为更好地培养我国高中学生运用数学分析和解决实际问题的能力提供了良好的条件。我们要继承高中数学教材编写中重视数学基础知识和基本技能的优良传统和丰富经验,编出一套高质量的高中数学教材,以下仅对数学概念的处理谈点看法。8/26数学概念是数学研究对象的高度抽象和概括,它反映了数学对象的本质属性,是最重要的数学知识之一。概念教学是数学教学的重要组成部分,正确理解概念是学好数学的基矗概念教学的基本要求是对概念阐述的科学性和学生对概念的可接受性。目前,对中学数学概念教学,有两种不同的观点:一种观点是要“淡化概念,注重实质”,另一种观点是要保持概念阐述的科学性和严谨性。高中数学课程的建设也面临着同样的问题。笔者认为,对这一问题的处理应该“轻其所轻,重其所重”,不能一概而论。提出“淡化概念,注重实质”是有针对性的,它指出了教材和教学中的一些弊端。一些次要和学生一时难以深刻理解但又必须引入的概念,在教学中必须对其定义作淡化(或者说浅化)的处理,有的可以用白体字印刷,来表明概念被淡化。但一些重要概念的定义还是应以比较严格的形式给出为妥,否则,虽然老师容易判定这些概念的定义是被淡化的,但是学生容易对概念产生误解和歧义,关键在于教师在教学中把握好度,突出教学的重点。还有一些概念,在数学学科体系中有重要的地位和作用,对这类概念,不但不能作淡化处理,反之,还要花大力处理好,让学生对概念能较好地理解和掌握。例如,初中几何的点概念、高中数学的集合等概念,是人们从现实世界广泛对象中抽象而得,在教材处理中要让学生认识到概念所涉及的对象的广泛性,从而认识到概念应用的广泛性,另外学生也在这里学到了数学的抽象方法。对于数学概念,应该注意到不同数学概念的重要性具有层次性。总之,9/26对于数学概念的处理,要取慎重的态度,继承和改革都不能偏废。(三)重视应用意识的培养。用数学是学数学的出发点和归宿。教科书必须重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。可以考虑把与现实生活密切相关的银行事务、利率、投资、税务中的常识写进课本。当然,并不是所有的数学课题都要从实际引入,数学体系有其内在的逻辑结构和规律,许多数学概念是从前面的概念中通过演绎而得,又返回到数学的逻辑结构。此外,理论联系实际的目的是为了使学生更好地掌握基础知识,能初步运用数学解决一些简单的实际问题,不宜于把实际问题搞得过于繁复费解,以致于耗费学生宝贵的学习时间。(四)教一般过程和方法。在一些典型的数学问题教学中,教给学生比较完整的解决实际问题的过程和常用方法,以提高学生解决实际问题的能力。由于实际问题常常是错综复杂的,解决问题的手段和方法也多种多样,不可能也不必要寻找一种固定不变的,非常精细的模式。笔者认为,问题解决的基本过程是:1.首先对与问题有关的实际情况作尽可能全面深入的调查,从中去粗取精,去伪存真,对问题有一个比较准确、清楚的认识;2.拟定解决

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功