126.1.2反比例函数的图象和性质(1)教学目标1、体会并了解反比例函数的图象的意义2、能描点画出反比例函数的图象3、通过反比例函数的图象分析,探索并掌握反比例函数的图象的性质。重点与难点:重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。难点:探索并掌握反比例函数的主要性质。教学过程:一、课堂引入提问:1.一次函数y=kx+b(k、b是常数,k≠0)的图象是什么?其性质有哪些?正比例函数y=kx(k≠0)呢?2.画函数图象的方法是什么?其一般步骤有哪些?应注意什么?二、探索新知:探索活动1反比例函数xy6与xy6的图象.探索活动2反比例函数xy6与xy6的图象有什么共同特征?三、应用举例:例1.(补充)已知反比例函数32)1(mxmy的图象在第二、四象限,求m值,并指出在每个象限内y随x的变化情况?例2.(补充)如图,过反比例函数xy1(x>0)2的图象上任意两点A、B分别作x轴的垂线,垂足分别为C、D,连接OA、OB,设△AOC和△BOD的面积分别是S1、S2,比较它们的大小,可得()(A)S1>S2(B)S1=S2(C)S1<S2(D)大小关系不能确定四、随堂练习1.已知反比例函数xky3,分别根据下列条件求出字母k的取值范围(1)函数图象位于第一、三象限(2)在第二象限内,y随x的增大而增大2.反比例函数xy2,当x=-2时,y=;当x<-2时;y的取值范围是;当x>-2时;y的取值范围是3.已知反比例函数yaxa()226,当x0时,y随x的增大而增大,求函数关系式五、小结:谈谈你的收获六、布置作业七、板书设计26.1.2反比例函数的图象和性质(1)1、反比例函数的图象例:2、反比例函数的主要性质练习:教学反思:结合正比例函数y=kx(k≠0)的图象和性质,来帮助学生观察、分析及归纳,通过对比,能使学生更好地理解和掌握所学的内容注意让3学生体会数形结合的思想方法。以积极探索的思想,逐步提高从函数图象中获取信息的能力,探索并掌握反比例函数的主要性质。26.1.2反比例函数的图象和性质(2)一、教学目标1.使学生进一步理解和掌握反比例函数及其图象与性质2.能灵活运用函数图象和性质解决一些较综合的问题3.深刻领会解析式与图象之间联系,体会数形结合及转化思想方法二、重点与难点重点:理解并掌握反比例函数图象和性质,并能利用它们解决一些综合问题难点:学会从图象上分析、解决问题,理解反比例函数的性质。三、教学过程(一)复习引入:1.什么是反比例函数?2.反比例函数的图象是什么?有什么性质?(二)应用举例:例1.(补充)若点A(-2,a)、B(-1,b)、C(3,c)在反比例函数xky(k<0)图象上,则a、b、c的大小关系怎样?例2.(补充)如图,一次函数y=kx+b的图象与反比例函4数xmy的图象交于A(-2,1)、B(1,n)两点(1)求反比例函数和一次函数的解析式(2)根据图象写出一次函数的值大于反比例函数的值的x的取值范围例3:已知变量y与x成反比例,且当x=2时y=9(1)写出y与x之间的函数解析式和自变量的取值范围。(三)随堂练习:1.当质量一定时,二氧化碳的体积V与密度p成反比例。且V=5m3时,p=1.98kg/m3(1)求p与V的函数关系式,并指出自变量的取值范围。(2)求V=9m3时,二氧化碳的密度。2、已知反比例函数y=k/x(k≠0)的图像经过点(4,3),求当x=6时,y的值。(四)小结:谈谈你的收获(五)布置作业(六)板书设计26.1.2反比例函数的图象和性质(2)1、反比例函数及其图象与性质例:2、综合的问题练习:四、教学反思:经历观察、分析,交流的过程,逐步提高从函数图象中感受其规律的能力。5情感态度与价值观,提高学生的观察、分析的能力和对图形的感知水平,使学生从整体上领悟研究函数的一般要求。