第二十八章锐角三角函数解题技巧专题:构造直角三角形解题类型一录目页类型二◆类型一化斜为直1.如图,在△ABC中,AB=2,∠B=45°,tanC=12,求△ABC的周长.解:如图,过点A作AD⊥BC于点D,∵∠B=45°,∴△ABD是等腰直角三角形.∴AD=BD=22AB=22×2=1.∵tanC=ADCD=12,∴1CD=12.∴CD=2.∴BC=BD+CD=1+2=3.在Rt△ACD中,根据勾股定理得,AC=AD2+CD2=12+22=5,∴△ABC的周长为2+5+3.2.如图,AD是△ABC的中线,tanB=15,cosC=22,AC=2.求:(1)BC的长;解:(1)如图,作AH⊥BC于点H.在Rt△ACH中,cosC=22=CHAC,AC=2,∴CH=1.∴AH=AC2-CH2=1.在Rt△ABH中,∵tanB=AHBH=15,∴BH=5.∴BC=BH+CH=6.(2)∵BD=CD,∴CD=12BC=3,则DH=DC-CH=2.∴AD=AH2+DH2=5.(2)∠ADC的正弦值.在Rt△ADH中,sin∠ADH=AHAD=55.∴∠ADC的正弦值为55.3.如图,在△ABC中,AB=BC=5,tan∠ABC=34.(1)求边AC的长;解:(1)如图,过点A作AE⊥BC于E.在Rt△ABE中,tan∠ABC=AEBE=34,AB=5,∴AE=3,BE=4.∴CE=BC-BE=5-4=1.在Rt△AEC中,根据勾股定理得AC=32+12=10.(2)设边BC的垂直平分线与边AB的交点为D,求ADDB的值.(2)如图,作BC的垂直平分线DF,交BC于F,连接DC.∵DF垂直平分BC,∴BD=CD,BF=CF=52.∵tan∠DBF=DFBF=34,∴DF=158.在Rt△BFD中,根据勾股定理得BD=(52)2+(158)2=258,∴AD=5-258=158.∴ADBD=35.◆类型二等比代换4.如图,在Rt△BAD中,延长斜边BD到点C,使DC=12BD,连接AC.若tanB=53,求tan∠CAD的值.解:如图,过点C作CE⊥AD,交AD的延长线于E,则∠CED=90°.又∵∠BAD=90°,∠ADB=∠CDE,∴△CDE∽△BDA.∵DC=12BD,∴CEAB=DEAD=CDBD=12.∵tanB=53,∴设AD=5x,AB=3x.∴CE=32x,DE=52x.∴AE=152x.∴tan∠CAD=ECAE=15.5.如图,在△ABC中,D为BC边上的一点,若∠B=36°,AB=AC=BD=2.(1)求CD的长;解:(1)∵AB=AC,∠ABC=36°,∴∠C=∠ABC=36°.∴∠BAC=180°-∠ABC-∠C=108°.∵AB=BD,∠ABC=36°,∴∠BAD=∠BDA=12×(180°-∠B)=72°.∴∠CAD=∠BAC-∠BAD=108°-72°=36°.∴∠DAC=∠ABC.∵∠C=∠C,∴△CAD∽△CBA.∴ACCD=BCAC.∵AB=AC=BD=2,∴2CD=2+CD2.解得CD=5-1(负值舍去).(2)如图,延长CB到E,使BE=AB=2,连接AE,则∠E=∠BAE=18°.(2)利用此图求sin18°的值.∵∠BAD=72°,∴∠EAD=72°+18°=90°.∵∠C=∠CAD=36°,∴AD=CD=5-1.在Rt△EAD中,sinE=ADED=5-12+2=5-14,即sin18°=5-14.