全等三角形教案【实用4篇】资料通常是指书籍、报刊、图表、图片等。当我们的学习遇到难题时,经常都会用到资料进行参考。参考资料可以促进我们的学习工作效率的提升。那么,想必您在找可以用得到的资料吧?为了让您在使用时更加简单方便,下面是网友分享的“全等三角形教案【实用4篇】”,供大家借鉴和使用,希望大家分享!全等三角形教案篇【第一篇】一、教材分析本节课的教学内容是人教版数学八年级上册第十一章《全等三角形》的第一节.这是全章的开篇,也是全等条件的基础.它是继线段、角、相交线与平行线及三角形有关知识之后出现的通过本节的学习,可以丰富和加深学生对已学图形的认识,同时为学习其他图形知识打好基础,具有承上启下的作用.教材根据初中学生的认知规律和特点,采用由浅入深、由易到难、抓联系、促迁移的方法.通过生活中的实例创设情景,形成概念,再通过平移、翻折、旋转说明变换前后的两个三角形全等,进而得出全等三角形的相关概念及其性质.二、教学目标分析知识与技能1.了解全等三角形的概念,通过动手操作,体会平移、翻折、旋转是考察两三角形全等的主要方法.2.能准确确定全等三角形的对应元素.3.掌握全等三角形的性质.过程与方法1.通过找出全等三角形的对应元素,培养学生的识图能力.2.能利用全等三角形的概念、性质解决简单的数学问题.情感、态度与价值观通过构建和谐的课堂教学氛围,激发学生的学习兴趣,调动学生的学习积极性,使学生勇于提出问题,乐于探索问题,同时注重培养学生善于合作交流的良好情感和积极向上的学习态度.三、教学重点、难点重点:全等三角形的概念、性质及对应元素的确定.难点:全等三角形对应元素的确定.四、学情分析学生在七年级时已经学过线段、角、相交线与平行线及三角形的有关知识,并学习了一些简单的说理,已初步具有对简单图形的分析和辨识能力,但八年级的学生仍处于以形象思维为主要思维形式的时期.为了发展学生的空间观念,培养学生的抽象思维能力,本节课将充分利用动画演示,来揭示图形的平移、翻折和旋转等变换过程,以便让学生在观察、分析中获得大量的感性认识,进而达到对全等三角形的理性认识.五、教法与学法本节课坚持“教与学、知识与能力的辩证统一”和“人人都能获得必需的数学”的原则,博采启发教学法、引探教学法、讲授教学法等诸多方法之长,借助多媒体手段引导学生观察、猜想和探究,促进学生自主学习,努力做到教与学的最优组合.六、教学教程Ⅰ.课题引入1.电脑显示问题:各组图形的形状与大小有什么特点?一般学生都能发现这两个图形是完全重合的。归纳:能够完全重合的两个图形叫做全等形。2.学生动手操作⑴在纸板上任意画一个三角形ABC,并剪下,然后说出三角形的三个角、三条边和每个角的对边、每个边的对角。⑵问题:如何在另一张纸板再剪一个三角形DEF,使它与△ABC全等?(学生分组讨论、提出方法、动手操作)3.板书课题:全等三角形定义:能够完全重合的两个三角形叫做全等三角形“全等”用“≌”表示,读着“全等于”如图中的'两个三角形全等,记作:△ABC≌△DEFⅡ.全等三角形中的对应元素1.问题:你手中的两个三角形是全等的,但是如果任意摆放能重合吗?该怎样做它们才能重合呢?2.学生讨论、交流、归纳得出:⑴.两个全等三角形任意摆放时,并不一定能完全重合,只有当把相同的角重合到一起(或相同的边重合到一起)时它们才能完全重合。这时我们把重合在一起的顶点、角、边分别称为对应顶点、对应角、对应边。⑵.表示两个全等三角形时,通常把表示对应顶点字母写在对应的位置上,这样便于确定两个三角形的对应关系。Ⅲ.全等三角形的性质1.观察与思考:寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?(引导学生从全等三角形可以完全重合出发找等量关系)全等三角形的性质:全等三角形的对应边相等.全等三角形的对应角相等.2.用几何语言表示全等三角形的性质如图:∵ABC≌DEF∴AB=DE,AC=DF,BC=EF(全等三角形对应边相等)∠A=∠D,∠B=∠E,∠C=∠F(全等三角形对应角相等)Ⅳ.探求全等三角形对应元素的找法1.动画(几何画板)演示(1).图中的各对三角形是全等三角形,怎样改变其中一个三角形的位置,使它能与另一个三角形完全重合?归纳:两个全等的三角形经过一定的转换可以重合.一般是平移、翻折、旋转的方法.(2).说出每个图中各对全等三角形的对应边、对应角归纳:从运动的角度可以很轻松地解决找对应元素的问题.可见图形转换的奇妙.3.归纳:找对应元素的常用方法有两种:(1)从运动角度看a.翻折法:一个三角形沿某条直线翻折与另一个三角形重合,从而发现对应元素.b.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.c.平移法:沿某一方向推移使两三角形重合来找对应元素.(2)根据位置元素来推理a.有公共边的,公共边是对应边;b.有公共角的,公共角是对应角;c.有对顶角的,对顶角是对应角;d.两个全等三角形最大的边是对应边,最小的边也是对应边;e.两个全等三角形最大的角是对应角,最小的角也是对应角;Ⅴ.课堂练习练习1.△ABD≌△ACE,若∠B=25°,BD=6㎝,AD=4㎝,你能得出△ACE中哪些角的大小,哪些边的长度吗?为什么?练习2.△ABC≌△FED⑴写出图中相等的线段,相等的角;⑵图中线段除相等外,还有什么关系吗?请与同伴交流并写出来.Ⅵ.小结1.这节课你学会了什么?有哪些收获?有什么感受?2.通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用一些方法可以找到两个全等三角形的对应元素.这也是这节课大家要重点掌握的Ⅶ.作业课本第92页1、2、3题全等三角形教案篇【第二篇】教学目标一、知识与技能1、了解全等形和全等三角形的概念,掌握全等三角形的性质。2、能正确表示两个全等三角形,能找出全等三角形的对应元素。二、过程与方法通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。三、情感态度与价值观通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。教学重点1、全等三角形的性质。2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。教学难点正确寻找全等三角形的对应元素难点突破通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。课前准备:课件、三角形纸片教学过程一、出示学习目标1、知道什么是全等形、全等三角形及全等三角形的对应元素。2、知道全等三角形的性质,能用符号正确地表示两个三角形全等。二、直观感知,导入新课教师演示一些全等的图形的课件,让学生直观感知图片并寻找每组图片的特点。二、合作探究,学习新知1.全等形我们给这样的图形起个名称----全等形。[板书:全等形]教师让学生们想生活中还有那些图形是全等形.2.全等三角形及相关对应元素的定义教师用多媒体动态演示两个能完全重合地三角形。定义全等三角形:能够完全重合的两个三角形,叫全等三角形。[板书课题:全等三角形]2.全等三角形的对应元素及表示把三角形平移、翻折、旋转后,什么发生了变化,什么没有变?归纳:旋转前后的两个三角形,位置变化了,但形状大小都没有变,它们依然全等。以多媒体上的图形为例,全等三角形中的对应元素1对应的顶点(三个)---重合的顶点2对应边(三条)---重合的边3对应角(三个)---重合的角归纳:方法一---全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;方法二:全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。另外:有公共边的,公共边一定是对应边;有对顶角的,对顶角一定是对应角。.用符号表示全等三角形抽学生表示图一、图二、三的全等三角形。3.全等三角形的性质思考:全等三角形的对应边、对应角有什么关系?为什么?归纳:全等三角形的对应边相等、对应角相等。4.小组活动合作升华学生分小组动手操作摆图形小组合作完成位置不同的三角形,写出它们的对应边,对应角。强调其他小组学生说的时候,自己一定要注意倾听,能够分辨出对错来。三、巩固练习四、教师用多媒体展示习题,学生做巩固练习。五、小结:本节课都学到了什么六、作业:必做题课本33页习题第1题、2题.选做题课本第34页第6题。全等三角形教案篇【第三篇】【教学目标】1.使学生理解边边边公理的内容,能运用边边边公理证明三角形全等,为证明线段相等或角相等创造条件;2.继续培养学生画图、实验,发现新知识的能力.【重点难点】1.难点:让学生掌握边边边公理的内容和运用公理的自觉性;2.重点:灵活运用SSS判定两个三角形是否全等.【教学过程】一、创设问题情境,引入新课请问同学,老师在黑板上画得两个三角形,△ABC与△全等吗?你是如何判定的.(同学们各抒己见,如:动手用纸剪下一个三角形,剪下叠到另一个三角形上,是否完全重合;测量两个三角形的所有边与角,观察是否有三条边对应相等,三个角对应相等.)上一节课我们已经探讨了两个三角形只满足一个或两个边、角对应相等条件时,两个三角形不一定全等.满足三个条件时,两个三角形是否全等呢?现在,我们就一起来探讨研究.二、实践探索,总结规律1、问题1:如果两个三角形的三条边分别相等,那么这两个三角形会全等吗?做一做:给你三条线段,分别为,你能画出这个三角形吗?先请几位同学说说画图思路后,教师指导,同学们动手画,教师演示并叙述书写出步骤.步骤:(1)画一线段AB使它的长度等于c().(2)以点A为圆心,以线段b(3cm)的长为半径画圆弧;以点B为圆心,以线段a(4cm)的长为半径画圆弧;两弧交于点C.(3)连结AC、BC.△ABC即为所求把你画的三角形与其他同学的图形叠合在一起,你们会发现什么?换三条线段,再试试看,是否有同样的结论请你结合画图、对比,说说你发现了什么?同学们各抒己见,教师总结:给定三条线段,如果它们能组成三角形,那么所画的三角形都是全等的.这样我们就得到判定三角形全等的一种简便的方法:如果两个三角形的三条边分别对应相等,那么这两个三角形全等.简写为边边边,或简记为().2、问题2:你能用相似三角形的判定法解释这个(SSS)三角形全等的判定法吗?(我们已经知道,三条边对应成比例的两个三角形相似,而相似比为1时,三条边就分别对应相等了,这两个三角形不但形状相同,而且大小都一样,即为全等三角形.)3、问题3、你用这个SSS三角形全等的判定法解释三角形具有稳定性吗?(只要三角形三边的长度确定了,这个三角形的形状和大小就完全确定了)4、范例:例1如图,四边形ABCD中,AD=BC,AB=DC,试说明△ABC≌△CDA.解:已知AD=BC,AB=DC,又因为AC是公共边,由()全等判定法,可知△ABC≌△CDA5、练习:6、试一试:已知一个三角形的三个内角分别为、、,你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,你发现了什么?(所画出的三角形都是相似的,但大小不一定相同).三个对应角相等的两个三角形不一定全等.三、加强练习,巩固知识1、如图,,,△ABC≌△DCB全等吗?为什么?2、如图,AD是△ABC的中线,.与相等吗?请说明理由.四、小结本节课探讨出可用(SSS)来判定两个三角形全等,并能灵活运用(SSS)来判定三角形全等.三个角对应相等的两个三角不一定会全等.五、作业全等三角形教案篇【第四篇】一、教材分析(一)、教材的地位与作用HL定理是学生学习一般三角形全等的判定之后的一节内容,主要让学生通过对直角三角形全等的判定,让学生体会其特殊性,为学习等腰三角形的性质和直角三角形中30度的角所对的直角边与斜边的关系作铺垫。(二)、教学目标1、会已知直角三角形的一条直角边和斜边,作直角三角形2、掌握直角三角形全等的判定方法----“HL”定理3、能利用全等直角三角形的判定方法“HL”定理解决简单实际问题4、经历探索直角三角形全等条件的过程,体会分析问题的方法。积累数