好文供参考!1/6高二数学必修五知识点总结(通用4篇)【引读】这篇优秀的文档“高二数学必修五知识点总结(通用4篇)”由网友上传分享,供您参考学习使用,希望此文对您有所帮助,喜欢的话就分享给下载吧!高二年级数学必修五知识点总结【第一篇】一、变量间的相关关系1.常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系。2.从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关。二、两个变量的线性相关从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线。当r0时,表明两个变量正相关;当rr的绝对值越接近于1,表明两个变量的线性相关性越强。r的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系。通常|r|大于时,认为两个变量有很强好文供参考!2/6的线性相关性。三、解题方法1.相关关系的判断方法一是利用散点图直观判断,二是利用相关系数作出判断。2.对于由散点图作出相关性判断时,若散点图呈带状且区域较窄,说明两个变量有一定的线性相关性,若呈曲线型也是有相关性。3.由相关系数r判断时|r|越趋近于1相关性越强。高二数学必修五知识点总结【第二篇】公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαk∈zcos(2kπ+α)=cosαk∈ztan(kπ+α)=tanαk∈zcot(2kπ+α)=cotαk∈z公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=—sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα好文供参考!3/6公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanα好文供参考!4/6sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα推算公式:3π/2±α与α的三角函数值之间的关系:sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα高二年级数学必修五知识点总结【第三篇】空间直线与直线之间的位置关系(1)异面直线定义:不同在任何一个平面内的两条直线(2)异面直线性质:既不平行,又不相交。(3)异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角。两条异面直线所成角的范围是(0°,90°],若两条好文供参考!5/6异面直线所成的角是直角,我们就说这两条异面直线互相垂直。(4)求异面直线所成角步骤:A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。B、证明作出的角即为所求角C、利用三角形来求角(5)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。(6)空间直线与平面之间的位置关系直线在平面内——有无数个公共点。三种位置关系的符号表示:aαa∩α=Aaα(7)平面与平面之间的位置关系:平行——没有公共点;αβ相交——有一条公共直线。α∩β=b高二数学必修五知识点总结【第四篇】分层抽样两种方法:1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。好文供参考!6/62.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。分层标准:(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。(3)以那些有明显分层区分的变量作为分层变量。3.分层的比例问题:(1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。(2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。