关于高一数学的教案精编4篇

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

好文供参考!1/23关于高一数学的教案精编4篇【引读】这篇优秀的文档“关于高一数学的教案精编4篇”由网友上传分享,供您参考学习使用,希望此文对您有所帮助,喜欢的话就分享给下载吧!高一数学必修一优秀教案1一、教学目标1、知识与技能:(1)通过实物操作,增强学生的直观感知。(2)能根据几何结构特征对空间物体进行分类。(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。(4)会表示有关于几何体以及柱、锥、台的分类。2、过程与方法:(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。(2)让学生观察、讨论、归纳、概括所学的知识。3、情感态度与价值观:(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。(2)培养学生的空间想象能力和抽象括能力。好文供参考!2/23二、教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。难点:柱、锥、台、球的结构特征的概括。三、教学用具(1)学法:观察、思考、交流、讨论、概括。(2)实物模型、投影仪。四、教学过程(一)创设情景,揭示课题1、由六根火柴最多可搭成几个三角形?(空间:4个)2在我们周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?3、展示具有柱、锥、台、球结构特征的空间物体。问题:请根据某种标准对以上空间物体进行分类。(二)、研探新知空间几何体:多面体(面、棱、顶点):棱柱、棱锥、棱台;旋转体(轴):圆柱、圆锥、圆台、球。1、棱柱的结构特征:(1)观察棱柱的几何物体以及投影出棱柱的图片,思考:它们各自的特点是什么?共同特点是什么?(学生讨论)(2)棱柱的主要结构特征(棱柱的概念):好文供参考!3/23①有两个面互相平行;②其余各面都是平行四边形;③每相邻两上四边形的公共边互相平行。(3)棱柱的表示法及分类:(4)相关概念:底面(底)、侧面、侧棱、顶点。2、棱锥、棱台的结构特征:(1)实物模型演示,投影图片;(2)以类似的方法,根据出棱锥、棱台的结构特征,并得出相关的概念、分类以及表示。棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形。棱台:且一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。3、圆柱的结构特征:(1)实物模型演示,投影图片——如何得到圆柱?(2)根据圆柱的概念、相关概念及圆柱的表示。4、圆锥、圆台、球的结构特征:(1)实物模型演示,投影图片——如何得到圆锥、圆台、球?(2)以类似的方法,根据圆锥、圆台、球的结构特征,以及相关概念和表示。5、柱体、锥体、台体的概念及关系:好文供参考!4/23探究:棱柱、棱锥、棱台都是多面体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否互相转化?圆柱、圆锥、圆台呢?6、简单组合体的结构特征:(1)简单组合体的构成:由简单几何体拼接或截去或挖去一部分而成。(2)实物模型演示,投影图片——说出组成这些物体的几何结构特征。(3)列举身边物体,说出它们是由哪些基本几何体组成的。(三)排难解惑,发展思维1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱?(反例说明)2、棱柱的何两个平面都可以作为棱柱的底面吗?高一数学集合教案2高一数学教案设计一:集合的概念教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义好文供参考!5/23(3)使学生初步了解有限集、无限集、空集的意义教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:1、集合是中学数学的一个重要的基本概念。在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题。例如,在代数中用到的有数集、解集等;在几何中用到的有点集。至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具。这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联好文供参考!6/23系,它们是学习、掌握和使用数学语言的基础。例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念。学习引言是引发学生的学习兴趣,使学生认识学习本章的意义。本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念。在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识。教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集。”这句话,只是对集合概念的描述性说明教学过程:一、复习引入:1、简介数集的发展,复习最大公约数和最小公倍数,质数与和数;2、教材中的章头引言;3、集合论的创始人——康托尔(德国数学家)(见附录);4、“物以类聚”,“人以群分”;5、教材中例子(P4)二、讲解新课:好文供参考!7/23阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。集合中的每个对象叫做这个集合的元素。定义:一般地,某些指定的对象集在一起就成为一个集合、1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N,(2)正整数集:非负整数集内排除0的集记作N*或N+(3)整数集:全体整数的集合记作Z,(4)有理数集:全体有理数的集合记作Q,(5)实数集:全体实数的集合记作R注:(1)自然数集与非负整数集是相同的,也就是说,自好文供参考!8/23然数集包括数0(2)非负整数集内排除0的集记作N*或N+Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*3、元素对于集合的隶属关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A,记作4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……⑵“∈”的开口方向,不能把a∈A颠倒过来写三、练习题:1、教材P5练习2、下列各组对象能确定一个集合吗?(1)所有很大的实数(不确定)好文供参考!9/23(2)好心的人(不确定)(3)1,2,2,3,4,5、(有重复)3、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2__4、由实数x,-x,|x|,所组成的集合,最多含(A)(A)2个元素(B)3个元素(C)4个元素(D)5个元素5、设集合G中的元素是所有形如a+b(a∈Z,b∈Z)的数,求证:(1)当x∈N时,x∈G;(2)若x∈G,y∈G,则x+y∈G,而不一定属于集合G证明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,则x=x+0*=a+b∈G,即x∈G证明(2):∵x∈G,y∈G,∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)∴x+y=(a+b)+(c+d)=(a+c)+(b+d)∵a∈Z,b∈Z,c∈Z,d∈Z∴(a+c)∈Z,(b+d)∈Z∴x+y=(a+c)+(b+d)∈G,又∵不一定都是整数,∴=不一定属于集合G好文供参考!10/23四、小结:本节课学习了以下内容:1、集合的有关概念:(集合、元素、属于、不属于)2、集合元素的性质:确定性,互异性,无序性3、常用数集的定义及记法高一数学集合教案3教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教具:好文供参考!11/23多媒体、实物投影仪内容分析:1、集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书好文供参考!12/23给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明教学过程:一、复习引入:1、简介数集的发展,复习公约数和最小公倍数,质数与和数;2、教材中的章头引言;3、集合论的创始人——康托尔(德国数学家)(见附录);4、“物以类聚”,“人以群分”;5、教材中例子(P4)二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。集合中的每个对象叫做这个集合的元素。定义:一般地,某些指定的对象集在一起就成为一个集合。1、集合的概念好文供参考!13/23(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N,(2)正整数集:非负整数集内排除0的集记作Nx或N+(3)整数集:全体整数的集合记作Z,(4)有理数集:全体有理数的集合记作Q,(5)实数集:全体实数的集合记作R注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作Nx或N+Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Zx3、元素对于集合的隶属关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A,记作好文供参考!14/234、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、⑴集合通常用

1 / 23
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功