机械优化设计方法(PPT203页)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第一章:绪论优化设计(OptimumDesign)是60年代发展起来的一门新的设计方法,是最优化技术和计算技术在设计领域中应用的结果。解析法数值计算法优化方法微分求极值迭代逼近最优值计算机优化设计机械优化设计是使某项机械设计在规定的各种设计限制条件下,优选设计参数,使某项或几项设计指标获得最优值。什么叫机械优化设计工程设计上的“最优值”(Optimum)或“最佳值”系指在满足多种设计目标和约束条件下所获得的最令人满意和最适宜的值。一、从传统设计到优化设计机械设计一般需要经过调查研究(资料检索)、拟订方案(设计模型)、分析计算(论证方案)、绘图和编制技术文件等一系列的工作过程。图1-1传统的机械设计过程图1-3机械优化设计过程框图优化设计与传统设计相比,具有如下三个特点:(1)设计的思想是最优设计;(2)设计的方法是优化方法;(3)设计的手段是计算机。二、机械优化设计的发展概况近几十年来,随着数学规划论和电子计算机的迅速发展而产生的,它首先在结构设计、化学工程、航空和造船等部门得到应用。1.优化设计的应用领域国内近年来才开始重视,但发展迅速,在机构综合、机械的通用零部件的设计、工艺设计方面都得到应用。2.目前机械优化设计的应用领域在机械设计方面的应用较晚,从国际范围来说,是在上世纪60年代后期才得到迅速发展的。优化设计本身存在的问题和某些发展趋势主要有以下几方面:1)目前优化设计多数还局限在参数最优化这种数值量优化问题。结构型式的选择还需进一步研究解决。2)优化设计这门新技术在传统产业中普及率还不高。3)把优化设计与CAD、专家系统结合起来是优化设计发展的趋势之一。三、本课程的主要内容1.建立优化设计的数学模型2.选择合适的优化方法3.编制计算机程序,求得最佳设计参数第一章机械优化设计概述第一节应用实例机械优化设计问题来源于生产实际。现在举典型实例来说明优化设计的基本问题。图1-1所示的人字架由两个钢管构成,其顶点受外力2F=3×N。人字架的跨度2B=152cm,钢管壁厚T=0.25cm,钢管材料的弹性模量E=2.1×Mpa,材料密度ρ=7.8×/,许用压应力=420MPa。求在钢管压应力不超过许用压应力和失稳临界应力的条件下,人字架的高h和钢管平均直径D,使钢管总质量m为最小。510510310kg3myye图2-2人字架的受力人字架的优化设计问题归结为:TxDH使结构质量minmx但应满足强度约束条件yx稳定约束条件ex钢管所受的压力12221()FLFBhFhh失稳的临界力22eEIFL钢管所受的压应力12221FBhFATDh钢管的临界应力222228eeETDFABh强度约束条件yx可以写成1222yFBhTDh稳定约束条件ex可以写成1222222228FBhETDTDhBh人字架的总质量1222,22mDhALTDBh这个优化问题是以D和h为设计变量的二维问题,且只有两个约束条件,可以用解析法求解。除了解析法外,还可以采用作图法求解。1-3人字架优化设计的图解第三节优化设计问题的数学模型一、设计变量在优化设计的过程中,不断进行修改、调整,一直处于变化的参数称为设计变量。设计变量的全体实际上是一组变量,可用一个列向量表示:12...Tnxxxx图2-4设计空间二、约束条件一个可行设计必须满足某些设计限制条件,这些限制条件称作约束条件,简称约束。约束性能约束侧面约束针对性能要求只对设计变量的取值范围限制(又称边界约束)(按性质分)按数学表达形式分:约束等式约束不等式约束()0hx()0gx可行域:凡满足所有约束条件的设计点,它在设计空间的活动范围。一般情况下,其设计可行域可表示为:()0()0uvgxxhx1,2,...,1,2,...,umvpn图2-5二维问题的可行域三、目标函数目标函数是设计变量的函数,是设计中所追求的目标。如:轴的质量,弹簧的体积,齿轮的承载能力等。在优化设计中,用目标函数的大小来衡量设计方案的优劣,故目标函数也可称评价函数。目标函数的一般表示式为:12()(,,...)nfxfxxx优化设计的目的就是要求所选择的设计变量使目标函数达到最佳值,即使()fxOpt通常()minfx目标函数单目标设计问题多目标设计问题目前处理多目标设计问题的方法是组合成一个复合的目标函数,如采用线性加权的形式,即1122()()()...()qqfxWfxWfxWfx四、优化问题的数学模型优化设计的数学模型是对优化设计问题的数学抽象。优化设计问题的一般数学表达式为:1,2,...,1,2,...,umvpn()0()0uvgxhx()fxminnxR..st数学模型的分类:(1)按数学模型中设计变量和参数的性质分:确定型模型随机型模型设计变量和参数取值确定设计变量和参数取值随机(2)按目标函数和约束函数的性质分:a.目标函数和约束函数都是设计变量的线形函数称为线性规划问题,其数学模型一般为:()fxminnxRTCx..stAxB0xb.若目标函数是设计变量的二次函数、约束是线性函数,则为二次规划问题。其一般表达式为:0..21)(minXDQXtsRXAXXXBCxFnTT五、优化问题的几何解释无约束优化:在没有限制的条件下,对设计变量求目标函数的极小点。其极小点在目标函数等值面的中心。约束优化:在可行域内对设计变量求目标函数的极小点。其极小点在可行域内或在可行域边界上。第四节优化设计问题的基本解法求解优化问题的方法:解析法数值法数学模型复杂时不便求解可以处理复杂函数及没有数学表达式的优化设计问题图1-11寻求极值点的搜索过程第二章优化设计的数学基础机械设计问题一般是非线性规划问题。实质上是多元非线性函数的极小化问题,因此,机械优化设计是建立在多元函数的极值理论基础上的。机械优化设计问题分为:无约束优化约束优化无条件极值问题条件极值问题第一节多元函数的方向导数与梯度一、方向导数从多元函数的微分学得知,对于一个连续可微函数f(x)在某一点的一阶偏导数为:()kx1()kfxx2()kfxx()knfxx,,,…它表示函数f(x)值在点沿各坐标轴方向的变化率。()kx有一个二维函数,如图2-1所示。图2-1函数的方向导数其函数在点沿d方向的方向导数为0x000(0)112212211,,fxxxxfxxxxx1200limxx00001221222,,fxxxfxxxx001212coscosfxfxxx000(0)01122120,,limfxxxxfxxfxd二、二元函数的梯度对于二维函数12,fxx在0x点处的梯度000012,Txfxfxfxxx设12coscosd为d方向的单位向量,则有00Txffxdd即00Txffxdd0cos,Tfxfd三、多元函数的梯度000012,,...Tnfxfxfxfxxxx沿d方向的方向向量即00Txffxdd0cos,Tfxfd12coscos...cosnd图2-5梯度方向与等值面的关系若目标函数f(x)处处存在一阶导数,则极值点的必要条件一阶偏导数等于零,即*0fx满足此条件仅表明该点为驻点,不能肯定为极值点,即使为极值点,也不能判断为极大点还是极小点,还得给出极值点的充分条件设目标函数在点至少有二阶连续的偏导数,则*x在这一点的泰勒二次近似展开式为:第二节多元函数的泰勒展开*2*****1,112nniiijjiijiijfxfxfxfxxxxxxxxxx2222112122222122222212.....................kkknkkkknkkknnnfxfxfxxxxxxfxfxfxGxxxxxxfxfxfxxxxxx为N维函数f(x)在点()kx处的Hesse矩阵泰勒展开写成向量矩阵形式******12TTfxfxfxxxxxGxxx*0fx∵****12TfxfxxxGxxx∵*0fxfx(1)▽F(X*)=0;必要条件(2)Hesse矩阵G(X*)为正定。充分条件多元函数f(x)在处取得极值,则极值的条件为*x*x为无约束极小点的充分条件其Hesse矩阵G(X*)为正定的。则极小点必须满足***0TxxGxxx为无约束优化问题的极值条件同学考虑二元函数在处取得极值的充分必要条件。*x120fxfxfx10020xxx02221120222212xffxxxGxffxxx各阶主子式大于零例:求函数的极值22121212,425fxxxxxx第四节凸集、凸函数与凸规划前面我们根据函数极值条件确定了极小点*x则函数f(x)在附近的一切x均满足不等式*x*fxfx所以函数f(x)在处取得局部极小值,称为局部极小点。*x*x而优化问题一般是要求目标函数在某一区域内的全局极小点。函数的局部极小点是不是一定是全局极小点呢?图2-7下凸的一元函数一、凸集的线段都全部包含在该集合内,就称该点集为凸集,否则为非凸集。一个点集(或区域),如果连接其中任意两点1x2x2x凸集的性质二、凸函数函数f(x)为凸集定义域内的函数,若对任何的011x2x及凸集域内的任意两点存在如下不等式:121211fxxfxx称fx是定义在凸集上的一个凸函数。三、凸性条件1.根据一阶导数(函数的梯度)来判断函数的凸性设f(x)为定义在凸集R上,且具有连续的一阶导数的函数,则f(x)在R上为凸函数的充要条件是对凸集R内任意不同两点,不等式1x2x21211Tfxfxxxfx恒成立。2.根据二阶导数(Hesse矩阵)来判断函数的凸性设f(x)为定义在凸集R上且具有连续二阶导数的函数,则f(x)在R上为凸函数的充要条件Hesse矩阵在R上处处半正定。四、凸规划对于约束优化问题minfx..st0jgx1,2,...,jm若fxjgx都为凸函数,则此问题为凸规划。凸规划的性质:1.若给定一点,则集合0x0fxfxRx为凸集。2.可行域1,2,...,0jjmgxRx为凸集3.凸规划的任何局部最优解就是全局最优解第五节等式约束优化问题的极值条件约束优化等式约束不等式约束求解这一问题的方法消元法拉格朗日乘子法minfx..st0khx1,2,...,kl1.消元法(降维法)以二元函数为例讨论。二、拉格朗日乘子法(升维法)对于具有L个等式约束的n维优化问题*x处有**0Tdfxfxdx**10lTkkikiihdhxdxhxdxx将原来的目标函数作如下改造:1,lkkkFxfxhx拉格朗日函数待定

1 / 203
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功