成都八年级下册数学期末考试试题(解析版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

既然选择了远方,就必须风雨兼程!八年级下册期末考试数学试题一、选择题:1.不等式x+1>3的解集是()A.x>1B.x>﹣2C.x>2D.x<2解:移项,得x>3﹣1,合并同类项,得x>2.故选C.2.下列各式能用完全平方公式进行分解因式的是()A.x2+1B.x2+2x﹣1C.x2+x+1D.x2+4x+4解:根据完全平方公式:a2±2ab+b2=(a±b)2可得,选项A、B、C都不能用完全平方公式进行分解因式,D、x2+4x+4=(x+2)2.故选D3.下列电视台的台标,是中心对称图形的是()A.B.C.D.解:A、不是中心对称图形,故A选项错误;B、不是中心对称图形,故B选项错误;C、不是中心对称图形,故C选项错误;D、是中心对称图形,故D选项正确.故选D.4.不等式组的解集在数轴上表示正确的是()既然选择了远方,就必须风雨兼程!A.B.C.D.解:,解①得x≤1,解②得x>﹣3.故选D.5.五边形的内角和为()A.720°B.540°C.360°D.180°解:五边形的内角和为:(5﹣2)×180°=540°.故选:B.6.若关于x的分式方程的解为x=2,则m值为()A.2B.0C.6D.4解:∵分式方程的解为x=2,∴,解得m=6.故选C.7.若函数y=kx+b(k,b为常数)的图象如图所示,那么当y>0时,x的取值范围是()A.x>1B.x>2C.x<1D.x<2既然选择了远方,就必须风雨兼程!解:函数y=kx+b(k,b为常数)的图象,与x轴的交点坐标是(2,0),且y随x的增大而减小,∴当y>0时,有x<2.故选D.8.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.=B.=C.=D.=解:设原计划每天生产x台机器,则现在可生产(x+50)台.依题意得:=.故选:A.9.如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为()A.7B.14C.17D.20解:∵在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.∴MN是AB的垂直平分线,∴AD=BD,∵△ADC的周长为10,既然选择了远方,就必须风雨兼程!∴AC+AD+CD=AC+BD+CD=AC+BC=10,∵AB=7,∴△ABC的周长为:AC+BC+AB=10+7=17.故选C.10.如图,在Rt△ABC中∠ACB=90°,斜边上的中线CF=8cm,DE是△ABC的中位线,则下列叙述中,正确的序号为()①S△ACF=S△BCF;②DE=8cm;③四边形CDFE是矩形;④S△ABC=2S△CDE.A.①②④B.①③④C.②③④D.①②③解:∵CF是△ABC的中线,∴S△ACF=S△BCF,①正确;∵∠ACB=90°,斜边上的中线CF=8cm,∴AB=2CF=16cm,∵DE是△ABC的中位线,∴DE=AB=8cm,②正确;连接DF、EF,∵D是AC的中点,F是AB的中点,∴DF=BC=CE,同理,EF=AC=CD,∴四边形CDEF是平行四边形,又∠ACB=90°,∴四边形CDFE是矩形,③正确;∵DE是△ABC的中位线,∴S△ABC=4S△CDE,④错误;故选:D.既然选择了远方,就必须风雨兼程!二、填空题:本大题共4小题,每小题4分,共16分,答案写在答题卡上.11.已知:x2﹣y2=8,x﹣y=4,则x+y=2.解:∵x2﹣y2=(x+y)(x﹣y)=8,x﹣y=4,∴x+y=2,故答案为:212.如果有意义,那么x应满足x.解:由有意义,得2x﹣5≠0.解得x≠.那么x应满足x.故答案为:x.13.若菱形的对角线长为24和10,则菱形的边长为13.解:如图,BD=10,AC=24,∵四边形ABCD是菱形,∴OA=AC=12,OB=BD=5,AC⊥BD,∴AB==13,故答案为:13.既然选择了远方,就必须风雨兼程!14.如图,在平面直角坐标系中,将矩形OABC沿OB对折,使点A落在点A1处,已知OA=,AB=1,则点A1的坐标是(,).解:由OA=,AB=1可得tan∠AOB=,那么∠AOB=30°,所以∠A1OB=∠AOB=30°,OA1=0A=,则∠A1OC=30°,作A1D⊥y轴于点D,利用三角函数可得A1D=,DO=1.5,故A1的坐标为:(,).三、解答题:本大题共6个小题,共54分.解答过程写在答题卡上.15.(1)分解因式:(x+2)(x+4)+1(2)解不等式,并在数轴上表示它的解集.解:(1)原式=x2+6x+8+1=x2+6x+9=(x+3)2;(2)去分母,得:3x﹣2(x﹣1)≥6,去括号,得:3x﹣2x+2≥6,移项,得:3x﹣2x≥6﹣2,合并同类项,得:x≥4,在数轴上表示不等式的解集如下:既然选择了远方,就必须风雨兼程!16.先化简,再求值:,其中.(结果精确到0.01)解:原式=﹣==,当a=﹣2时,原式==≈0.58.17.如图,在平行四边形ABCD中,P、Q是对角线BD上的两个点,且BP=DQ.求证:四边形APCQ为平行四边形.证明:连接AC,交BD于O,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BP=DQ,∴OP=OQ,∴四边形APCQ为平行四边形.18.如图,△ABC三个顶点的坐标分别为A(﹣1,1),B(﹣4,2),C(﹣3,4).既然选择了远方,就必须风雨兼程!(1)请画出△ABC向右平移5个单位长度后得到△A1B1C1;(2)请画出△ABC关于原点对称的△A2B2C2;(3)在x轴上求作一点P,使△PAB的周长最小,并直接写出点P的坐标.解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)如图所示,此时△PAB的周长最小,P点坐标为:(﹣2,0).19.如图,一次函数y=﹣的图象分别与x轴、y轴交于点A、B,将线段AB绕A点顺时针旋转90°,点B落至C处,求过B、C两点直线的解析式.解:过C点作CH⊥x轴于H,如图,当x=0时,y=﹣=2,则B(0,2),当y=0时,﹣=0,解得x=3,则A(3,0),既然选择了远方,就必须风雨兼程!∵线段AB绕A点顺时针旋转90°,∴AB=AC,∠BAC=90°,∴∠BAO+∠CAH=90°,而∠BAO+∠ABO=90°,∴∠ABO=∠CAH,在△ABO和△CAH中,∴△ABO≌△CAH,∴AH=OB=2,CH=OA=3,∴C点坐标为(5,3),设直线BC的解析式为y=kx+b,把B(0,2),C(5,3)代入得,解得,∴直线BC的解析式为y=x+2.20.如图,四边形ABCD是正方形,点E在BC上,过D点作DG⊥DE交BA的延长线于G.(1)求证:DE=DG;(2)以线段DE、DG为边作出正方形DEFG,点K在AB上且BK=AG,连接KF,请画出图形,猜想四边形CEFK是怎样的特殊四边形,并证明你的猜想;(3)当时,请直接写出的值.既然选择了远方,就必须风雨兼程!(1)证明:∵四边形ABCD是正方形,∴DC=DA,∠DCE=∠DAG=90°.在△DCE与△DAG中,,∴△DCE≌△DAG,∴DE=DG;(2)解:四边形CEFK为平行四边形.证明:设CK、DE相交于M点,∵四边形ABCD和四边形DEFG都是正方形,∴AB∥CD,AB=CD,EF=DG,EF∥DG,∵BK=AG,∴KG=AB=CD,∴四边形CKGD是平行四边形,∴CK=DG=EF,CK∥DG,∴∠KME=∠GDE=∠DEF=90°,∴∠KME+∠DEF=180°,∴CK∥EF,∴四边形CEFK为平行四边形.(3)解:∵,∴设CE=mx,CB=nx,∴CD=nx,∴DE2=CE2+CD2=n2x2+m2x2=(n2+m2)x2,∵BC2=n2x2,既然选择了远方,就必须风雨兼程!∴==.四、填空题:本大题共5个小题,每小题4分,共20分,答案写在答题卡上.21.因式分解:2x3﹣8x2+8x=2x(x﹣2)2.解:原式=2x(x2﹣4x+4)2x(x﹣2)2.故答案为:2x(x﹣2)2.22.若x+,则的值是.解:=,当x+,原式==.故答案为.23.如图,直线y=﹣x+m与y=x+5的交点的横坐标为﹣2,则关于x的不等式﹣x+m>x+5>0的整数解为﹣3,﹣4.解:∵直线y=﹣x+m与y=x+5的交点的横坐标为﹣2,∴关于x的不等式﹣x+m>x+5的解集为x<﹣2,∵y=x+5=0时,x=﹣5,∴x+5>0的解集是x>﹣5,∴﹣x+m>x+5>0的解集是﹣5<x<﹣2,既然选择了远方,就必须风雨兼程!∴整数解为﹣3,﹣4.故答案为﹣3,﹣4.24.如图,点O是等边△ABC内一点,∠AOB=110°,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD,若OD=AD,则∠BOC的度数为140°.解:设∠BOC=α,根据旋转的性质知,△BOC≌△ADC,则OC=DC,∠BOC=∠ADC=α.又∵△BOC绕点C按顺时针方向旋转60°得到△ADC,∴∠OCD=60°,∴△OCD是等边三角形,∴∠COD=∠CDO=60°,∵OD=AD,∴∠AOD=∠DAO.∵∠AOD=360°﹣110°﹣60°﹣α=190°﹣α,∠ADO=α﹣60°,∴2×(190°﹣α)+α﹣60°=180°,解得α=140°.故答案是:140°.既然选择了远方,就必须风雨兼程!25.对x、y定义一种新运算T,规定:T(x,y)=(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==b,已知T(1,﹣1)=﹣2,T(4,2)=1,若关于m的不等式组恰好有3个整数解,则实数P的取值范围是﹣3≤p<﹣2.解:∵T(1,﹣1)=﹣2,T(4,2)=1,∴=1,=1,解得:a=2,b=1,T(2m,5﹣4m)==1≤4,T(m,3﹣2m)==1>p,∵关于m的不等式组恰好有3个整数解,∴实数P的取值范围是﹣3≤p<﹣2,故答案为:﹣3≤p<﹣2.五、解答题:本大题共三个小题,共30分,答案写在答题卡上.26.某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料,生产一件A、B产品所需原料如表:类别甲种材料(千克)乙种材料(千克)1件A产品所需材料411件B产品所需材料33经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产B产品不少于38件,问符合生产条件的生产方案有哪几种?既然选择了远方,就必须风雨兼程!(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,使生产这60件产品的成本最低?(成本=材料费+加工费)解:(1)设甲材料每千克x元,乙材料每千克y元,根据已知可得,解得.答:甲材料每千克25元,乙材料每千克35元.(2)设需要生产B产品m件,则生产A产品60﹣m件,则购买甲、乙材料钱为[4×(60﹣m)+3m]×25+[1×(60﹣m)+3m]×35=45m+8100,又∵现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产B产品不少于38件,∴有,解得38≤m≤40.故有三种方案,分别为:①当m=38时,生产A产品22件,B产品38件;②当m=39时,生产A产品21件,B产品39件;③当m=40时,生产A产品20件,B产品40件.(3)结合(2)得知,方案①:成本=45×38+8100+22×40+38×50=1710+8100+880+1900=12590(元).方案②:成本=45×39+8100+21×40+39×50,=1755+8100+840+1950,=12645(元).方案③:成本=

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功