1材料力学重点及其公式材料力学的任务(1)强度要求;(2)刚度要求;(3)稳定性要求。变形固体的基本假设(1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。外力分类:表面力、体积力;内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。应力:dAdPAPpAlim0正应力、切应力。变形与应变:线应变、切应变。杆件变形的基本形式(1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;静载荷:载荷从零开始平缓地增加到最终值,然后不在变化的载荷动载荷:载荷和速度随时间急剧变化的载荷为动载荷。失效原因:脆性材料在其强度极限b破坏,塑性材料在其屈服极限s时失效。二者统称为极限应力理想情形。塑性材料、脆性材料的许用应力分别为:3ns,bbn,强度条件:maxmaxAN,等截面杆ANmax轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:lll1,沿轴线方向的应变和横截面上的应力分别为:ll,APAN。横向应变为:bbbbb1',横向应变与轴向应变的关系为:'。胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即E,这就是胡克定律。E为弹性模量。将应力与应变的表达式带入得:EANll静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。圆轴扭转时的应力变形几何关系—圆轴扭转的平面假设dxd。物理关系——胡克定律dxdGG。力学关系dAdxdGdxdGdATAAA22圆轴扭转时的应力:tpWTRITmax;圆轴扭转的强度条件:][maxtWT,可以进行强度校核、截面设计和确定许可载荷。圆轴扭转时的变形:lplpdxGITdxGIT;等直杆:pGITl圆轴扭转时的刚度条件:pGITdxd,][180maxmaxpGIT弯曲内力与分布载荷q之间的微分关系)()(xqdxxdQ;xQdxxdM;xqdxxdQdxxMd22Q、M图与外力间的关系a)梁在某一段内无载荷作用,剪力图为一水平直线,弯矩图为一斜直线。b)梁在某一段内作用均匀载荷,剪力图为一斜直线,弯矩图为一抛物线。2c)在梁的某一截面。0xQdxxdM,剪力等于零,弯矩有一最大值或最小值。d)由集中力作用截面的左侧和右侧,剪力Q有一突然变化,弯矩图的斜率也发生突然变化形成一个转折点。梁的正应力和剪应力强度条件WMmaxmax,max提高弯曲强度的措施:梁的合理受力(降低最大弯矩maxM,合理放置支座,合理布置载荷,合理设计截面形状塑性材料:ct,上、下对称,抗弯更好,抗扭差。脆性材料:ct,采用T字型或上下不对称的工字型截面。等强度梁:截面沿杆长变化,恰使每个截面上的正应力都等于许用应力,这样的变截面梁称为等强度梁。二向应力状态分析—解析法(1)任意斜截面上的应力2sin2cos22xyyxyx;2cos2sin2xyyx(2)极值应力正应力:yxxytg220,22minmax)2(2xyyxyx切应力:xyyxtg221,22minmax)2(xyyx(3)主应力所在的平面与剪应力极值所在的平面之间的关系与1之间的关系为:4,2220101,即:最大和最小剪应力所在的平面与主平面的夹角为45°扭转与弯曲的组合(1)外力向杆件截面形心简化(2)画内力图确定危险截面(3)确定危险点并建立强度条件按第三强度理论,强度条件为:31或224,对于圆轴,WWt2,其强度条件为:][22WTM。按第四强度理论,强度条件为:21323222121,经化简得出:223,对于圆轴,其强度条件为:][75.022WTM。第一部分静力学判断题1、力的三要素是大小、方向、作用线。(F)2、两个力只能合成唯一的一个力,故一个力也只能分解为唯一的两个力。(F)3、力偶对其作用面内任意一点之矩恒等于力偶矩,与矩心位置无关。(T)4、作用于刚体上的力F,可以平移到刚体上的任一点,但必须同时附加一个力偶。(T)5、作用力和反作用力必须大小相等、方向相反,且作用在同一直线上和同一物体上。(F)1、物体的形心不一定在物体上。(T)2、作用力与反作用力是一组平衡力系。(F)3mF3、两个力在同一轴上的投影相等,此两力必相等。(F)4、力系的合力一定比各分力大。(F)5、两个力在同一轴上的投影相等,此两力必相等。(F)1、作用力与反作用力是一组平衡力系。(F)2、作用在任何物体上的力都可以沿其作用线等效滑移(F)3、图示平面平衡系统中,若不计定滑轮和细绳的重力,且忽略摩擦,则可以说作用在轮上的矩为m的力偶与重物的重力F相平衡。(FF)4、作用在同一刚体上的两个力,使刚体处于平衡的必要和充分的条件是:这两个力大小相等、方向相反、作用线沿同一条直线。(T)5、物体的重心和形心虽然是两个不同的概念,但它们的位置却总是重合的。(F)1、如果力FR是F1、F2两力的合力,用矢量方程表示为FR=F1+F2,则三力大小之间的关系为D。A.必有FR=F1+F2B.不可能有FR=F1+F2C.必有FR>F1,FR>F2D.可能有FR<F1,FR<F2第二部分材料力学部分判断题1、杆件的基本变形有四种:轴向拉伸或压缩、剪切、挤压和弯曲。(F)2、当作用于杆件两端的一对外力等值、反向、共线时,则杆件产生轴向拉伸或压缩变形。(F)3、轴力的大小与杆件的横截面面积有关。(F)4、拉(压)杆中,横截面上的内力只与杆件所受外力有关。(T)5、轴力的大小与杆件的材料无关。(T)1、轴力越大,杆件越容易被拉断,因此轴力的大小可以用来判断杆件的强度。(F)2、从某材料制成的轴向拉伸试样,测得应力和相应的应变,即可求得其E=σ/ε。(F)3、构件抵抗变形的能力称为刚度。(T)4、轴向拉压杆任意斜截面上只有均匀分布的正应力,而无剪应力。(F)5、材料的弹性模量E是一个常量,任何情况下都等于应力和应变的比值(F)1、正应变的定义为E(F)42、对于拉伸曲线上没有屈服平台的合金塑性材料,工程上规定2.0作为名义屈服极限,此时相对应的应变为%2.0(F)3、在有集中力作用处,梁的剪力图要发生突变,弯矩图的斜率要发生突变。T4、圆环形截面的W=34116D(F)5、在研究一点的应力状态时,正应力为零的平面称为主平面。(F)选择题1、两根受相同轴向拉力作用的杆件,它们的材料和横截面面积相同,杆1的长度为杆2的2倍,试比较它们的轴力和轴向变形。正确结论为:(C)A.两杆的轴力和轴向变形相同B.两杆的轴力相同,杆1的轴向变形比杆2的小C.两杆的轴力相同,杆1的轴向变形比杆2的大D.两杆的变形相同,杆1的轴力比杆2大2、低碳钢的拉伸过程中,(B)阶段的特点是应力几乎不变,而应变却显著增加。A.弹性B.屈服C.强化D..颈缩3、二根圆截面拉杆,材料及受力均相同,两杆直径d1/d2=2,若要使二杆轴向伸长量相同,那么它们的长度比l1/l2应为(D)。A.1B.2C.3D.44、图示圆截面悬臂梁,若其它条件不变,而直径增加一倍,则其最大正应力是原来的(A)倍。A:81B:8C:2D:215、图示结构,其中AD杆发生的变形为(C)。A.弯曲变形B.压缩变形C.弯曲与压缩的组合变形D.弯曲与拉伸的组合变形6、三根试件的尺寸相同,材料不同,其应力应变关系如图所示,(A)试件弹性模量最大。5A.(1)B.(2)C.(3)1、平面汇交四个力作出如下图所示力多边形,表示力系平衡的是(A)。2、截面C处扭矩的突变值为(B)。A.AmB.CmC.cAmmD.)(21cAmm3、某点为平面应力状态(如图所示),该点的主应力分别为:(B)A.MPa501MPa02MPa303B.MPa501MPa02MPa303C.MPa501MPa302MPa034、在研究一点的应力状态时,引用主平面的概念,所谓主平面是指(C)。A.正应力为零的平面B.剪应力最大的平面C.剪应力为零的平面D.正应力应力均为零的平面5、一直径为d的实心圆轴,按强度条件计算其受扭转时的容许转力矩为T,当此轴的横截面面积增加一倍时,其容许扭转力矩将为(B)。A.2T;B.22TC.4T.D.42T1、作为脆性材料的极限应力是(D)A.比例极限B弹性极限C.屈服极限D.强度极限2、为了保证结构的安全和正常工作,对构件承载能力要求是(D)A.强度要求;B.强度要求和刚度要求;C.刚度要求和稳定性要求;D.强度要求、刚度要求和稳定性要求。3、第二强度理论是(C)A.最大剪应力理论;B.最大拉应力理论;C.最大拉应变理论;D.形状改变比能理论。50Mpa30Mpa64、工程中一般是以哪个指标来区分塑性材料和脆性材料的?(D)A.弹性模量B.强度极限C.比例极限D.延伸率5、环形截面对其形心的极惯性矩为(B)A.4464dDIp;B.4432dDIp;C.4416dDIp;D448dDIp.1、塑性材料的危险应力是(C),脆性材料的危险应力是(D)A.比例极限B.弹性极限C.屈服极限D.强度极限2、圆轴扭转变形时最大的剪应力发生在(C).A.圆心处B.中性轴处C.圆轴边缘D.不确定。3、如果仅从扭转强度方面考虑,图(a)、(b)所示的传动轴的两种齿轮布置方式中,(B)图的较为合理。4、如果仅从弯曲正应力强度方面考虑,图(c)、(d)所示梁的两种支座布置方式中,(D)图的较为合理。5、杆件的刚度是指(D)。A.杆件的软硬程度;B.杆件的承载能力;C.杆件对弯曲的抵抗能力;D.杆件对变形的抵抗能力。1、物体受力作用而发生变形,当外力去掉后又能恢复原来形状和尺寸的性质称为(A)。A.弹性B.塑料C.刚性D.稳定性2、没有明显屈服平台的塑性材料,其破坏应力取材料的(C)。mm2m(B)m(c)mF2m(A)q(A)q(B)7A.比例极限pB.名义屈服极限2.0C.强度极限b3、低碳钢的拉伸σ-ε曲线如图。若加载至强化阶段的C点,然后卸载,则应力回到零值的路径是沿(C)。A.曲线cbaoB.曲线cbf(bf∥oa)C.直线ce(ce∥oa)D.直线cd(cd∥oσ)4、一圆截面直杆,两端承受拉力作用,若将其直径增大一倍,其他条件不变,则下列不对的是(C)。A.其轴力不变B.其应力是原来的41C.其强度将是原来的2倍D.其伸长量是原来的415、钢筋经过冷作硬化处理后,其性能的变化是。AA.比例极限提高B.弹性模量降低C.延伸率提高1、某直梁横截面面积一定,试问下图所示的四种截面形状中,那一种抗弯能力最强。BA.矩形B.工字形C.圆形D.正方形2、T形截面铸铁材料悬臂梁受力如图,轴Z为中性轴,横截面合理布置的方案应为B。A(A)(B)(C)(D)3、物体受力作用而发生变形,当外力去掉后又能恢复原来形状和尺寸的性质称为(B)。A.塑性B.弹性C.刚性D.稳定性5、两拉杆的材料和所受拉力都相同,且均处在弹性范围内,若两杆长度相同,而截面积A1>A2,则两杆的伸长ΔL1(B)ΔL2。A.大于B.小于C.等于1、两根直径相同而长度及材料不同的圆轴,在相同扭矩作用下,其最