第1页(共18页)正多边形和圆及弧长和扇形面积检测一.选择题(共10小题)1.(2015•成都)如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC.,D.2,2.(2015•广州)已知圆的半径是2,则该圆的内接正六边形的面积是()A.3B.9C.18D.363.(2015•包头)已知圆内接正三角形的边心距为1,则这个三角形的面积为()A.2B.3C.4D.64.(2013•天津)正六边形的边心距与边长之比为()A.:3B.:2C.1:2D.:25.(2013•绵阳)如图,要拧开一个边长为a=6mm的正六边形螺帽,扳手张开的开口b至少为()A.mmB.12mmC.mmD.mm6.(2015•自贡)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=,则阴影部分图形的面积为()第2页(共18页)A.4πB.2πC.πD.7.(2015•甘孜州)如图,已知扇形AOB的半径为2,圆心角为90°,连接AB,则图中阴影部分的面积是()A.π﹣2B.π﹣4C.4π﹣2D.4π﹣48.(2015•东莞)如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为()A.6B.7C.8D.99.(2015•河池)如图,用一张半径为24cm的扇形纸板制作一顶圆锥形帽子(接缝忽略不计),如果圆锥形帽子的底面半径为10cm,那么这张扇形纸板的面积是()A.240πcm2B.480πcm2C.1200πcm2D.2400πcm210.(2015•乌鲁木齐)圆锥的侧面展开图是一个弧长为12π的扇形,则这个圆锥底面积的半径是()A.24B.12C.6D.3第3页(共18页)二.选择题(共10小题)11.(2015•营口)圆内接正六边形的边心距为2,则这个正六边形的面积为cm2.12.(2015•达州)已知正六边形ABCDEF的边心距为cm,则正六边形的半径为cm.13.(2015•铁岭)如图,点O是正五边形ABCDE的中心,则∠BAO的度数为.14.(2015•贵阳)如图,四边形ABCD是⊙O的内接正方形,若正方形的面积等于4,则⊙O的面积等于.15.(2015•天水)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是.16.(2015•温州)已知扇形的圆心角为120°,弧长为2π,则它的半径为.17.(2015•益阳)如图,正六边形ABCDEF内接于⊙O,⊙O的半径为1,则的长为.第4页(共18页)18.(2015•广西)已知一条圆弧所在圆半径为9,弧长为π,则这条弧所对的圆心角是.19.(2015•衡阳)圆心角为120°的扇形的半径为3,则这个扇形的面积为(结果保留π).20.(2015•酒泉)如图,半圆O的直径AE=4,点B,C,D均在半圆上,若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为.三.解答题(共3小题)21.(2015•沈阳)如图,四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OA、OB、OC、AC,OB与AC相交于点E.(1)求∠OCA的度数;(2)若∠COB=3∠AOB,OC=2,求图中阴影部分面积(结果保留π和根号)22.(2014•滨州)如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.第5页(共18页)23.(2013•佛山)如图,圆锥的侧面展开图是一个半圆,求母线AB与高AO的夹角.参考公式:圆锥的侧面积S=πrl,其中r为底面半径,l为母线长.第6页(共18页)正多边形和圆及弧长和扇形面积检测参考答案与试题解析一.选择题(共10小题)1.(2015•成都)如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC.,D.2,【考点】正多边形和圆;弧长的计算.菁优网版权所有【专题】压轴题.【分析】正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角关系即可求出OM,再利用弧长公式求解即可.【解答】解:连接OB,∵OB=4,∴BM=2,∴OM=2,==π,故选D.【点评】本题考查了正多边形和圆以及弧长的计算,将扇形的弧长公式与多边形的性质相结合,构思巧妙,利用了正六边形的性质,是一道好题.2.(2015•广州)已知圆的半径是2,则该圆的内接正六边形的面积是()A.3B.9C.18D.36【考点】正多边形和圆.菁优网版权所有【分析】解题的关键要记住正六边形的特点,它被半径分成六个全等的等边三角形.第7页(共18页)【解答】解:连接正六边形的中心与各个顶点,得到六个等边三角形,等边三角形的边长是2,高为3,因而等边三角形的面积是3,∴正六边形的面积=18,故选C.【点评】本题考查了正多边形和圆,正六边形被它的半径分成六个全等的等边三角形,这是需要熟记的内容.3.(2015•包头)已知圆内接正三角形的边心距为1,则这个三角形的面积为()A.2B.3C.4D.6【考点】正多边形和圆.菁优网版权所有【分析】作AD⊥BC与D,连接OB,则AD经过圆心O,∠ODB=90°,OD=1,由等边三角形的性质得出BD=CD,∠OBD=∠ABC=30°,得出OA=OB=2OD,求出AD、BC,△ABC的面积=BC•AD,即可得出结果.【解答】解:如图所示:作AD⊥BC与D,连接OB,则AD经过圆心O,∠ODB=90°,OD=1,∵△ABC是等边三角形,∴BD=CD,∠OBD=∠ABC=30°,∴OA=OB=2OD=2,∴AD=3,BD=,∴BC=2,∴△ABC的面积=BC•AD=×2×3=3;故选:B.【点评】本题考查了圆内接正三角形的性质、解直角三角形、三角形面积的计算;熟练掌握圆内接正三角形的性质,并能进行推理计算是解决问题的关键.4.(2013•天津)正六边形的边心距与边长之比为()A.:3B.:2C.1:2D.:2【考点】正多边形和圆.菁优网版权所有【分析】首先根据题意画出图形,然后设六边形的边长是a,由勾股定理即可求得OC的长,继而求得答案.【解答】解:如图:设六边形的边长是a,则半径长也是a;第8页(共18页)经过正六边形的中心O作边AB的垂线OC,则AC=AB=a,∴OC==a,∴正六边形的边心距与边长之比为:a:a=:2.故选B.【点评】此题考查了正多边形和圆的关系.此题难度不大,注意掌握数形结合思想的应用.5.(2013•绵阳)如图,要拧开一个边长为a=6mm的正六边形螺帽,扳手张开的开口b至少为()A.mmB.12mmC.mmD.mm【考点】正多边形和圆.菁优网版权所有【分析】根据题意,即是求该正六边形的边心距的2倍.构造一个由半径、半边、边心距组成的直角三角形,且其半边所对的角是30度,再根据锐角三角函数的知识求解.【解答】解:设正多边形的中心是O,其一边是AB,∴∠AOB=∠BOC=60°,∴OA=OB=AB=OC=BC,∴四边形ABCO是菱形,∵AB=6mm,∠AOB=60°,∴cos∠BAC=,∴AM=6×=3(mm),∵OA=OC,且∠AOB=∠BOC,∴AM=MC=AC,∴AC=2AM=6(mm).故选:C.第9页(共18页)【点评】本题考查了正多边形和圆的知识,构造一个由半径、半边、边心距组成的直角三角形,熟练运用锐角三角函数进行求解.6.(2015•自贡)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=,则阴影部分图形的面积为()A.4πB.2πC.πD.【考点】扇形面积的计算;垂径定理;圆周角定理;解直角三角形.菁优网版权所有【专题】数形结合.【分析】连接OD,则根据垂径定理可得出CE=DE,继而将阴影部分的面积转化为扇形OBD的面积,代入扇形的面积公式求解即可.【解答】解:连接OD.∵CD⊥AB,∴CE=DE=CD=(垂径定理),故S△OCE=S△ODE,即可得阴影部分的面积等于扇形OBD的面积,又∵∠CDB=30°,∴∠COB=60°(圆周角定理),∴OC=2,故S扇形OBD==,即阴影部分的面积为.故选:D.第10页(共18页)【点评】此题考查了扇形的面积计算、垂径定理及圆周角定理,解答本题关键是根据图形得出阴影部分的面积等于扇形OBD的面积,另外要熟记扇形的面积公式.7.(2015•甘孜州)如图,已知扇形AOB的半径为2,圆心角为90°,连接AB,则图中阴影部分的面积是()A.π﹣2B.π﹣4C.4π﹣2D.4π﹣4【考点】扇形面积的计算.菁优网版权所有【专题】压轴题.【分析】由∠AOB为90°,得到△OAB为等腰直角三角形,于是OA=OB,而S阴影部分=S扇形OAB﹣S△OAB.然后根据扇形和直角三角形的面积公式计算即可.【解答】解:S阴影部分=S扇形OAB﹣S△OAB==π﹣2故选:A.【点评】本题考查了扇形面积的计算,是属于基础性的题目的一个组合,只要记住公式即可正确解出.关键是从图中可以看出阴影部分的面积是扇形的面积减去直角三角形的面积.8.(2015•东莞)如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为()A.6B.7C.8D.9【考点】扇形面积的计算.菁优网版权所有【分析】由正方形的边长为3,可得弧BD的弧长为6,然后利用扇形的面积公式:S扇形DAB=,计算即可.【解答】解:∵正方形的边长为3,∴弧BD的弧长=6,∴S扇形DAB==×6×3=9.故选D.【点评】此题考查了扇形的面积公式,解题的关键是:熟记扇形的面积公式S扇形DAB=.第11页(共18页)9.(2015•河池)如图,用一张半径为24cm的扇形纸板制作一顶圆锥形帽子(接缝忽略不计),如果圆锥形帽子的底面半径为10cm,那么这张扇形纸板的面积是()A.240πcm2B.480πcm2C.1200πcm2D.2400πcm2【考点】圆锥的计算.菁优网版权所有【专题】计算题.【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式计算即可.【解答】解:这张扇形纸板的面积=×2π×10×24=240π(cm2).故选A.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.10.(2015•乌鲁木齐)圆锥的侧面展开图是一个弧长为12π的扇形,则这个圆锥底面积的半径是()A.24B.12C.6D.3【考点】圆锥的计算.菁优网版权所有【分析】利用圆锥侧面展开扇形的弧长等于底面圆的周长计算.【解答】解:设底面圆半径为r,则2πr=12π,化简得r=6.故选C.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.二.选择题(共10小题)11.(2015•营口)圆内接正六边形的边心距为2,则这个正六边形的面积为24cm2.【考点】正多边形和圆.菁优网版权所有【分析】根据正六边形的特点,通过中心作边的垂线,连接半径,结合解直角三角形的有关知识解决.【解答】解:如图,第12页(共18页)连接OA、OB;过点O作OG⊥AB于点G.在Rt△AOG中,OG=2,∠AOG=30°,∵OG=OA•cos30°,∴OA===4,∴这个正六边形的面积为6××4×2=24cm2.故答案为:24.【点评】此题主要考查正多边形的计算问题,根据题意画出图形,再根据正多边形的性质即锐角三角函数的定义解答即可.12.(2015•达州)已知正六边形ABCDEF的边心距为cm,则正六边形的半径为2cm.【考点】正多边形和圆.菁优网版权所有【分析