1.(2019·河南豫南九校联考)设定义在(0,+∞)上的函数f(x)的导函数f′(x)满足xf′(x)1,则()A.f(2)-f(1)ln2B.f(2)-f(1)ln2C.f(2)-f(1)1D.f(2)-f(1)1解析:选A.根据题意,函数f(x)的定义域为(0,+∞),则xf′(x)1⇒f′(x)1x=(lnx)′,即f′(x)-(lnx)′0.令F(x)=f(x)-lnx,则F(x)在(0,+∞)上单调递增,故f(2)-ln2f(1)-ln1,即f(2)-f(1)ln2.2.若0x1x21,则()A.ex2-ex1lnx2-lnx1B.ex2-ex1lnx2-lnx1C.x2ex1x1ex2D.x2ex1x1ex2解析:选C.令f(x)=exx,则f′(x)=xex-exx2=ex(x-1)x2.当0x1时,f′(x)0,即f(x)在(0,1)上单调递减,因为0x1x21,所以f(x2)f(x1),即ex2x2ex1x1,所以x2ex1x1ex2,故选C.3.已知函数f(x)=aex-lnx-1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当a≥1e时,f(x)≥0.解:(1)f(x)的定义域为(0,+∞),f′(x)=aex-1x.由题设知,f′(2)=0,所以a=12e2.从而f(x)=12e2ex-lnx-1,f′(x)=12e2ex-1x.当0x2时,f′(x)0;当x2时,f′(x)0.所以f(x)在(0,2)单调递减,在(2,+∞)单调递增.(2)证明:当a≥1e时,f(x)≥exe-lnx-1.设g(x)=exe-lnx-1,则g′(x)=exe-1x.当0x1时,g′(x)0;当x1时,g′(x)0.所以x=1是g(x)的最小值点.故当x0时,g(x)≥g(1)=0.因此,当a≥1e时,f(x)≥0.4.(2019·高考全国卷Ⅱ)已知函数f(x)=lnx-x+1x-1.(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;(2)设x0是f(x)的一个零点,证明曲线y=lnx在点A(x0,lnx0)处的切线也是曲线y=ex的切线.解:(1)f(x)的定义域为(0,1)∪(1,+∞).因为f′(x)=1x+2(x-1)20,所以f(x)在(0,1),(1,+∞)单调递增.因为f(e)=1-e+1e-10,f(e2)=2-e2+1e2-1=e2-3e2-10,所以f(x)在(1,+∞)有唯一零点x1,即f(x1)=0.又01x11,f1x1=-lnx1+x1+1x1-1=-f(x1)=0,故f(x)在(0,1)有唯一零点1x1.综上,f(x)有且仅有两个零点.(2)证明:因为1x0=e-lnx0,故点B-lnx0,1x0在曲线y=ex上.由题设知f(x0)=0,即lnx0=x0+1x0-1,连接AB,则直线AB的斜率k=1x0-lnx0-lnx0-x0=1x0-x0+1x0-1-x0+1x0-1-x0=1x0.曲线y=ex在点B-lnx0,1x0处切线的斜率是1x0,曲线y=lnx在点A(x0,lnx0)处切线的斜率也是1x0,所以曲线y=lnx在点A(x0,lnx0)处的切线也是曲线y=ex的切线.5.(一题多解)(2019·福州模拟)已知函数f(x)=elnx-ax(a∈R).(1)讨论f(x)的单调性;(2)当a=e时,证明:xf(x)-ex+2ex≤0.解:(1)f′(x)=ex-a(x0).①若a≤0,则f′(x)0,f(x)在(0,+∞)上单调递增;②若a0,则当0xea时,f′(x)0,当xea时,f′(x)0,故f(x)在0,ea上单调递增,在ea,+∞上单调递减.(2)证明:法一:因为x0,所以只需证f(x)≤exx-2e,当a=e时,由(1)知,f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,所以f(x)max=f(1)=-e.记g(x)=exx-2e(x0),则g′(x)=(x-1)exx2,所以当0x1时,g′(x)0,g(x)单调递减,当x1时,g′(x)0,g(x)单调递增,所以g(x)min=g(1)=-e.综上,当x0时,f(x)≤g(x),即f(x)≤exx-2e,即xf(x)-ex+2ex≤0.法二:由题意知,即证exlnx-ex2-ex+2ex≤0,从而等价于lnx-x+2≤exex.设函数g(x)=lnx-x+2,则g′(x)=1x-1.所以当x∈(0,1)时,g′(x)0,当x∈(1,+∞)时,g′(x)0,故g(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而g(x)在(0,+∞)上的最大值为g(1)=1.设函数h(x)=exex,则h′(x)=ex(x-1)ex2.所以当x∈(0,1)时,h′(x)0,当x∈(1,+∞)时,h′(x)0,故h(x)在(0,1)上单调递减,在(1,+∞)上单调递增,从而h(x)在(0,+∞)上的最小值为h(1)=1.综上,当x0时,g(x)≤h(x),即xf(x)-ex+2ex≤0.6.已知函数f(x)=ln(x+a)-x2-x在x=0处取得极值.(1)求实数a的值;(2)证明:对于任意的正整数n,不等式2+34+49+…+n+1n2ln(n+1)都成立.解:(1)因为f′(x)=1x+a-2x-1,又因为x=0为f(x)的极值点.所以f′(0)=1a-1=0,所以a=1.经检验,a=1时在x=0处取得极值,所以a=1.(2)证明:由(1)知f(x)=ln(x+1)-x2-x.因为f′(x)=1x+1-2x-1=-x(2x+3)x+1.令f′(x)0得-1x0.当x变化时,f′(x),f(x)变化情况如下表.x(-1,0)0(0,+∞)f′(x)+0-f(x)极大值所以f(x)≤f(0)=0,即ln(x+1)≤x2+x(当且仅当x=0时取等号).令x=1n,则ln1n+11n2+1n,即lnn+1nn+1n2,所以ln21+ln32+…+lnn+1n2+34+…+n+1n2.即2+34+49+…+n+1n2ln(n+1).