[基础题组练]1.如图所示是水平放置的三角形的直观图,点D是△ABC的BC边的中点,AB,BC分别与y′轴,x′轴平行,则在原图中三条线段AB,AD,AC中()A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AC,最短的是AD解析:选B.由条件知,原平面图形中AB⊥BC,从而ABADAC.2.如图所示,上面的几何体由一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得,现用一个竖直的平面去截这个几何体,则截面图形可能是()A.①②B.②③C.③④D.①⑤解析:选D.圆锥的轴截面为等腰三角形,此时①符合条件;当截面不过旋转轴时,圆锥的轴截面为双曲线的一支,此时⑤符合条件;故截面图形可能是①⑤.3.已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边长为2的直角三角形,则该三棱锥的正视图可能为()解析:选C.当正视图为等腰三角形时,则高应为2,且应为虚线,排除A,D;当正视图是直角三角形,由条件得一个直观图如图所示,中间的线是看不见的线PA形成的投影,应为虚线,故答案为C.4.如图,一个三棱柱的正视图和侧视图分别是矩形和正三角形,则这个三棱柱的俯视图为()解析:选D.由正视图和侧视图可知,这是一个水平放置的正三棱柱.故选D.5.(2019·福建漳州调研)某三棱锥的三视图如图所示,则该三棱锥的最长棱的长度为()A.5B.22C.3D.23解析:选C.在棱长为2的正方体ABCDA1B1C1D1中,M为AD的中点,该几何体的直观图如图中三棱锥D1MB1C.故通过计算可得D1C=D1B1=B1C=22,D1M=MC=5,MB1=3,故最长棱的长度为3,故选C.6.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为________.解析:由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为(2+4)×22×2=12.答案:127.一个圆台上、下底面的半径分别为3cm和8cm,若两底面圆心的连线长为12cm,则这个圆台的母线长为______cm.解析:如图,过点A作AC⊥OB,交OB于点C.在Rt△ABC中,AC=12(cm),BC=8-3=5(cm).所以AB=122+52=13(cm).答案:138.已知正四棱锥VABCD中,底面面积为16,一条侧棱的长为211,则该棱锥的高为________.解析:如图,取正方形ABCD的中心O,连接VO,AO,则VO就是正四棱锥VABCD的高.因为底面面积为16,所以AO=22.因为一条侧棱长为211,所以VO=VA2AO2=44-8=6.所以正四棱锥VABCD的高为6.答案:69.如图所示的三个图中,上面是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图如图所示(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积.解:(1)如图.(2)所求多面体的体积V=V长方体-V正三棱锥=4×4×6-13×(12×2×2)×2=2843(cm3).10.已知正三棱锥VABC的正视图和俯视图如图所示.(1)画出该三棱锥的直观图和侧视图.(2)求出侧视图的面积.解:(1)如图.(2)侧视图中VA=42-23×32×232=12=23.则S△VBC=12×23×23=6.[综合题组练]1.(创新型)某几何体的三视图如图所示,则该几何体的侧视图中的虚线部分是()A.圆弧B.抛物线的一部分C.椭圆的一部分D.双曲线的一部分解析:选D.根据几何体的三视图可得,侧视图中的虚线部分是由平行于旋转轴的平面截圆锥所得,故侧视图中的虚线部分是双曲线的一部分,故选D.2.(创新型)某几何体的正视图和侧视图如图(1),它的俯视图的直观图是矩形O1A1B1C1,如图(2),其中O1A1=6,O1C1=2,则该几何体的侧面积为()A.48B.64C.96D.128解析:选C.由题图(2)及斜二测画法可知原俯视图为如图所示的平行四边形OABC,设CB与y轴的交点为D,则易知CD=2,OD=2×22=42,所以CO=CD2+OD2=6=OA,所以俯视图是以6为边长的菱形,由三视图知几何体为一个直四棱柱,其高为4,所以该几何体的侧面积为4×6×4=96.故选C.3.如图,在正方体ABCDA1B1C1D1中,点P是线段A1C1上的动点,则三棱锥PBCD的俯视图与正视图面积之比的最大值为()A.1B.2C.3D.2解析:选D.正视图,底面B,C,D三点,其中D与C重合,随着点P的变化,其正视图均是三角形且点P在正视图中的位置在边B1C1上移动,由此可知,设正方体的棱长为a,则S正视图=12×a2;设A1C1的中点为O,随着点P的移动,在俯视图中,易知当点P在OC1上移动时,S俯视图就是底面三角形BCD的面积,当点P在OA1上移动时,点P越靠近A1,俯视图的面积越大,当到达A1的位置时,俯视图为正方形,此时俯视图的面积最大,S俯视图=a2,所以S俯视图S正视图的最大值为a212a2=2,故选D.4.(应用型)已知正方体ABCDA1B1C1D1的体积为1,点M在线段BC上(点M异于B,C两点),点N为线段CC1的中点,若平面AMN截正方体ABCDA1B1C1D1所得的截面为四边形,则线段BM的取值范围为()A.0,13B.0,12C.12,1D.12,23解析:选B.由题意,正方体ABCDA1B1C1D1的棱长为1,如图所示,当点M为线段BC的中点时,截面为四边形AMND1,当0<BM≤12时,截面为四边形,当BM>12时,截面为五边形,故选B.5.(2019·株洲模拟)已知直三棱柱ABCA1B1C1的侧棱长为6,且底面是边长为2的正三角形,用一平面截此棱柱,与侧棱AA1,BB1,CC1,分别交于三点M,N,Q,若△MNQ为直角三角形,则该直角三角形斜边长的最小值为()A.22B.3C.23D.4解析:选C.如图,不妨设N在B处,AM=h,CQ=m,则MB2=h2+4,BQ2=m2+4,MQ2=(h-m)2+4,由MB2=BQ2+MQ2,得m2-hm+2=0.Δ=h2-8≥0即h2≥8,该直角三角形斜边MB=4+h2≥23.故选C.6.(2019·高考全国卷Ⅱ)中国有悠久的金石文化,印信是金石文化的代表之一,印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1,则该半正多面体共有________个面,其棱长为________.解析:依题意知,题中的半正多面体的上、下、左、右、前、后6个面都在正方体的表面上,且该半正多面体的表面由18个正方形,8个正三角形组成,因此题中的半正多面体共有26个面.注意到该半正多面体的俯视图的轮廓是一个正八边形,设题中的半正多面体的棱长为x,则22x+x+22x=1,解得x=2-1,故题中的半正多面体的棱长为2-1.答案:262-1