[基础题组练]1.数列{an}的通项公式是an=(-1)n(2n-1),则该数列的前100项之和为()A.-200B.-100C.200D.100解析:选D.由题意知S100=(-1+3)+(-5+7)+…+(-197+199)=2×50=100.故选D.2.在数列{an}中,a1=2,a2=2,an+2-an=1+(-1)n,n∈N*,则S60的值为()A.990B.1000C.1100D.99解析:选A.n为奇数时,an+2-an=0,an=2;n为偶数时,an+2-an=2,an=n.故S60=2×30+(2+4+…+60)=990.3.(2019·河北“五个一名校联盟”模拟)已知数列{an}满足:an+1=an-an-1(n≥2,n∈N*),a1=1,a2=2,Sn为数列{an}的前n项和,则S2018=()A.3B.2C.1D.0解析:选A.因为an+1=an-an-1,a1=1,a2=2,所以a3=1,a4=-1,a5=-2,a6=-1,a7=1,a8=2,…,故数列{an}是周期为6的周期数列,且每连续6项的和为0,故S2018=336×0+a2017+a2018=a1+a2=3.故选A.4.122-1+132-1+142-1+…+1(n+1)2-1的值为()A.n+12(n+2)B.34-n+12(n+2)C.34-121n+1+1n+2D.32-1n+1+1n+2解析:选C.因为1(n+1)2-1=1n2+2n=1n(n+2)=121n-1n+2,所以122-1+132-1+142-1+…+1(n+1)2-1=121-13+12-14+13-15+…+1n-1n+2=1232-1n+1-1n+2=34-121n+1+1n+2.5.(2019·开封调研)已知数列{an}满足a1=1,an+1·an=2n(n∈N*),则S2018等于()A.22018-1B.3×21009-3C.3×21009-1D.3×21008-2解析:选B.a1=1,a2=2a1=2,又an+2·an+1an+1·an=2n+12n=2,所以an+2an=2.所以a1,a3,a5,…成等比数列;a2,a4,a6,…成等比数列,所以S2018=a1+a2+a3+a4+a5+a6+…+a2017+a2018=(a1+a3+a5+…+a2017)+(a2+a4+a6+…+a2018)=1-210091-2+2(1-21009)1-2=3·21009-3.故选B.6.(2019·郑州质量预测)已知数列{an}的前n项和为Sn,a1=1,a2=2,且an+2-2an+1+an=0(n∈N*),记Tn=1S1+1S2+…+1Sn(n∈N*),则T2018=________.解析:由an+2-2an+1+an=0(n∈N*),可得an+2+an=2an+1,所以数列{an}为等差数列,公差d=a2-a1=2-1=1,通项公式an=a1+(n-1)×d=1+n-1=n,则其前n项和Sn=n(a1+an)2=n(n+1)2,所以1Sn=2n(n+1)=2(1n-1n+1),Tn=1S1+1S2+…+1Sn=2(11-12+12-13+…+1n-1n+1)=2(1-1n+1)=2nn+1,故T2018=2×20182018+1=40362019.答案:403620197.已知数列{an}中,a1=2,且a2n+1an=4(an+1-an)(n∈N*),则其前9项和S9=________.解析:由已知,得a2n+1=4anan+1-4a2n,即a2n+1-4anan+1+4a2n=(an+1-2an)2=0,所以an+1=2an,所以数列{an}是首项为2,公比为2的等比数列,故S9=2×(1-29)1-2=210-2=1022.答案:10228.已知数列{an}满足an+1=12+an-a2n,且a1=12,则该数列的前2018项的和等于________.解析:因为a1=12,又an+1=12+an-a2n,所以a2=1,从而a3=12,a4=1,即得an=12,n=2k-1(k∈N*),1,n=2k(k∈N*),故数列的前2018项的和等于S2018=1009×1+12=30272.答案:302729.(2019·唐山模拟)已知数列{an}满足:1a1+2a2+…+nan=38(32n-1),n∈N*.(1)求数列{an}的通项公式;(2)设bn=log3ann,求1b1b2+1b2b3+…+1bnbn+1.解:(1)1a1=38(32-1)=3,当n≥2时,因为nan=(1a1+2a2+…+nan)-(1a1+2a2+…+n-1an-1)=38(32n-1)-38(32n-2-1)=32n-1,当n=1,nan=32n-1也成立,所以an=n32n-1.(2)bn=log3ann=-(2n-1),因为1bnbn+1=1(2n-1)(2n+1)=12(12n-1-12n+1),所以1b1b2+1b2b3+…+1bnbn+1=12[(1-13)+(13-15)+…+(12n-1-12n+1)]=12(1-12n+1)=n2n+1.10.(2019·唐山市摸底考试)已知数列{an}的前n项和为Sn,Sn=3an-12.(1)求an;(2)若bn=(n-1)an,且数列{bn}的前n项和为Tn,求Tn.解:(1)由已知可得,2Sn=3an-1,①所以2Sn-1=3an-1-1(n≥2),②①-②得,2(Sn-Sn-1)=3an-3an-1,化简得an=3an-1(n≥2),在①中,令n=1可得,a1=1,所以数列{an}是以1为首项,3为公比的等比数列,从而有an=3n-1.(2)bn=(n-1)3n-1,Tn=0×30+1×31+2×32+…+(n-1)×3n-1,③则3Tn=0×31+1×32+2×33+…+(n-1)×3n.④③-④得,-2Tn=31+32+33+…+3n-1-(n-1)×3n=3-3n1-3-(n-1)×3n=(3-2n)×3n-32.所以Tn=(2n-3)×3n+34.[综合题组练]1.在数列{an}中,若an+1+(-1)nan=2n-1,则数列{an}的前12项和等于()A.76B.78C.80D.82解析:选B.由已知an+1+(-1)nan=2n-1,得an+2+(-1)n+1·an+1=2n+1,得an+2+an=(-1)n(2n-1)+(2n+1),取n=1,5,9及n=2,6,10,结果相加可得S12=a1+a2+a3+a4+…+a11+a12=78.故选B.2.已知数列{an}的前n项和为Sn,a1=1,当n≥2时,an+2Sn-1=n,则S2017的值为()A.2015B.2013C.1008D.1009解析:选D.因为an+2Sn-1=n,n≥2,所以an+1+2Sn=n+1,n≥1,两式相减得an+1+an=1,n≥2.又a1=1,所以S2017=a1+(a2+a3)+…+(a2016+a2017)=1009,故选D.3.已知数列{an},若an+1=an+an+2(n∈N*),则称数列{an}为“凸数列”.已知数列{bn}为“凸数列”,且b1=1,b2=-2,则数列{bn}的前2019项和为________.解析:由“凸数列”的定义及b1=1,b2=-2,得b3=-3,b4=-1,b5=2,b6=3,b7=1,b8=-2,…,所以数列{bn}是周期为6的周期数列,且b1+b2+b3+b4+b5+b6=0,于是数列{bn}的前2019项和等于b1+b2+b3=-4.答案:-44.(一题多解)(2019·合肥模拟)数列{an}满足:a1=13,且an+1=(n+1)an3an+n(n∈N*),则数列{an}的前n项和Sn=________.解析:通解:an+1=(n+1)an3an+n,两边同时取倒数得1an+1=3an+n(n+1)an=3n+1+n(n+1)an,整理得n+1an+1=nan+3,所以n+1an+1-nan=3,所以数列{nan}是以1a1=3为首项,3为公差的等差数列,所以nan=3n,所以an=13,所以数列{an}是常数列,所以Sn=n3.优解:用归纳法求解,a1=13,根据an+1=(n+1)an3an+n,可得a2=13,a3=13,a4=13,所以猜想an=13,经验证an+1=13,从而Sn=n3.5.(2019·合肥模拟)已知等差数列{an}中,a5-a3=4,前n项和为Sn,且S2,S3-1,S4成等比数列.(1)求数列{an}的通项公式;(2)令bn=(-1)n4nanan+1,求数列{bn}的前n项和Tn.解:(1)设{an}的公差为d,由a5-a3=4,得2d=4,d=2.所以S2=2a1+2,S3-1=3a1+5,S4=4a1+12,又S2,S3-1,S4成等比数列,所以(3a1+5)2=(2a1+2)·(4a1+12),解得a1=1,所以an=2n-1.(2)bn=(-1)n4nanan+1=(-1)n(12n-1+12n+1),当n为偶数时,Tn=-(1+13)+(13+15)-(15+17)+…-(12n-3+12n-1)+(12n-1+12n+1),所以Tn=-1+12n+1=-2n2n+1.当n为奇数时,Tn=-(1+13)+(13+15)-(15+17)+…+(12n-3+12n-1)-(12n-1+12n+1),所以Tn=-1-12n+1=-2n+22n+1.所以Tn=-2n2n+1,n为偶数-2n+22n+1,n为奇数.6.(2019·银川质检)正项数列{an}的前n项和Sn满足:S2n-(n2+n-1)Sn-(n2+n)=0.(1)求数列{an}的通项公式an;(2)令bn=n+1(n+2)2a2n,数列{bn}的前n项和为Tn,证明:对于任意的n∈N*,都有Tn564.解:(1)由S2n-(n2+n-1)Sn-(n2+n)=0,得[Sn-(n2+n)](Sn+1)=0.由于数列{an}是正项数列,所以Sn0,Sn=n2+n.于是a1=S1=2,当n≥2时,an=Sn-Sn-1=n2+n-(n-1)2-(n-1)=2n.综上可知,数列{an}的通项公式an=2n.(2)证明:由于an=2n,bn=n+1(n+2)2a2n,则bn=n+14n2(n+2)2=1161n2-1(n+2)2.Tn=1161-132+122-142+132-152+…+1(n-1)2-1(n+1)2+1n2-1(n+2)2=1161+122-1(n+1)2-1(n+2)21161+122=564.