课时跟踪检测(三十)等差数列及其前n项和一、基础练——练手感熟练度1.已知数列{an}中a1=1,an+1=an-1,则a4等于()A.2B.0C.-1D.-2解析:选D因为a1=1,an+1=an-1,所以数列{an}为等差数列,公差d为-1,所以a4=a1+3d=1-3=-2,故选D.2.已知等差数列{an}的前n项和为Sn,若a1=2,a8+a10=28,则S9=()A.36B.72C.144D.288解析:选B法一:∵a8+a10=2a1+16d=28,a1=2,∴d=32,∴S9=9×2+9×82×32=72.法二:∵a8+a10=2a9=28,∴a9=14,∴S9=9a1+a92=72.3.公差不为零的等差数列{an}中,a7=2a5,则数列{an}中第________项的值与4a5的值相等.解析:设等差数列{an}的公差为d,因为a7=2a5,所以a1+6d=2(a1+4d),则a1=-2d,所以an=a1+(n-1)d=(n-3)d,而4a5=4(a1+4d)=4(-2d+4d)=8d=a11,故数列{an}中第11项的值与4a5的值相等.答案:114.(2019·江苏高考)已知数列{an}(n∈N*)是等差数列,Sn是其前n项和.若a2a5+a8=0,S9=27,则S8的值是________.解析:设等差数列{an}的首项为a1,公差为d.法一:由a2a5+a8=0,S9=27,得a1+da1+4d+a1+7d=0,9a1+9×82d=27,解得a1=-5,d=2,∴S8=8a1+8×72d=8×(-5)+28×2=16.法二:∵S9=27,∴S9=9a1+a92=9a5=27,∴a5=3,又a2a5+a8=0,则3(3-3d)+3+3d=0.解得d=2,∴S8=8a1+a82=4(a4+a5)=4×(1+3)=16.答案:165.若等差数列{an}的前17项和S17=51,则a5-a7+a9-a11+a13=________.解析:因为S17=a1+a172×17=17a9=51,所以a9=3.根据等差数列的性质知a5+a13=a7+a11,所以a5-a7+a9-a11+a13=a9=3.答案:36.设Sn为等差数列{an}的前n项和,满足S2=S6,S55-S44=2,则a1=________,公差d=________.解析:由{an}为等差数列,得数列Snn是首项为a1,公差为d2的等差数列,∵S55-S44=2,∴d2=2⇒d=4,又S2=S6⇒2a1+4=6a1+6×52×4⇒a1=-14.答案:-144二、综合练——练思维敏锐度1.设等差数列{an}的前n项和为Sn,若Sm-1=-2,Sm=0,Sm+1=3,则m等于()A.3B.4C.5D.6解析:选C∵数列{an}为等差数列,且前n项和为Sn,∴数列Snn也为等差数列.∴Sm-1m-1+Sm+1m+1=2Smm,即-2m-1+3m+1=0,解得m=5,经检验为原方程的解,故选C.2.已知数列{an}满足a1=15,且3an+1=3an-2.若ak·ak+10,则正整数k=()A.21B.22C.23D.24解析:选C由3an+1=3an-2⇒an+1-an=-23⇒{an}是等差数列,则an=473-23n.∵ak·ak+10,∴473-23k453-23k0,∴452k472,又∵k∈N*,∴k=23.3.(2021·济南八校联考)设数列{an}是等差数列,且a2=-6,a6=6,Sn是数列{an}的前n项和,则()A.S4S3B.S4=S3C.S4S1D.S4=S1解析:选B设{an}的公差为d,由a2=-6,a6=6,得a1+d=-6,a1+5d=6,解得a1=-9,d=3.于是,S1=-9,S3=3×(-9)+3×22×3=-18,S4=4×(-9)+4×32×3=-18,所以S4=S3,S4S1,故选B.4.(多选)设{an}是无穷数列,An=an+an+1(n=1,2,…),则下面给出的四个判断中,正确的有()A.若{an}是等差数列,则{An}是等差数列B.若{An}是等差数列,则{an}是等差数列C.若{an}是等比数列,则{An}是等比数列D.若{An}是等差数列,则{a2n}是等差数列解析:选AD若{an}是等差数列,设公差为d,则An=an+an+1=a1+(n-1)d+a1+nd=2a1+2nd-d,则An-An-1=(2a1+2nd-d)-[2a1+2(n-1)d-d]=2d,所以{An}是等差数列,故A正确;若{An}是等差数列,设公差为d,An-An-1=an+an+1-(an-1+an)=an+1-an-1=d,即数列{an}的偶数项成等差数列,奇数项成等差数列,故B不正确,D正确;若{an}是等比数列,设公比为q,当q≠-1时,则AnAn-1=an+an+1an-1+an=an-1q+anqan-1+an=q,当q=-1时,则An=an+an+1=0,故{An}不是等比数列,故C不正确.故选A、D.5.在等差数列{an}中,若a9a8-1,且它的前n项和Sn有最小值,则当Sn0时,n的最小值为()A.14B.15C.16D.17解析:选C∵数列{an}是等差数列,它的前n项和Sn有最小值,∴公差d0,首项a10,{an}为递增数列.∵a9a8-1,∴a8·a90,a8+a90,由等差数列的性质知,2a8=a1+a150,a8+a9=a1+a160.∵Sn=na1+an2,∴当Sn0时,n的最小值为16.6.《九章算术》一书中衰分、均输、盈不足等卷中记载了一些有关数列的问题.齐去长安三千里,今有良马发长安至齐,驽马发齐至长安,同日相向而行.良马初日行一百五十五里,日增十二里;驽马初日行一百里,日减二里.问几日相遇()A.十日B.十一日C.十二日D.六十日解析:选A设良马每天行走的里数构成数列{an},驽马每天行走的里数构成数列{bn},则{an},{bn}均为等差数列,公差分别为d1,d2.且a1=155,d1=12,b1=100,d2=-2,设n日相遇,则由题意知155n+nn-12×12+100n+nn-12×(-2)=3000,解得n=10.7.已知{an},{bn}均为等差数列,且a2=4,a4=6,b3=3,b7=9,由{an},{bn}的公共项组成新数列{cn},则c10=()A.18B.24C.30D.36解析:选C因为数列{an}为等差数列,且a2=4,a4=6,所以其公差d1=6-44-2=1,通项公式为an=n+2.因为数列{bn}为等差数列,且b3=3,b7=9,所以其公差d2=9-37-3=32,通项公式为bn=3n2-32.则a1=b3=3为数列{cn}的第一项,a4=b5=6为数列{cn}的第二项,a7=b7=9为数列{cn}的第三项,…,知{cn}为等差数列,{cn}的公差d=3,且cn=3+(n-1)·3=3n,则c10=3×10=30,故选C.8.已知数列{an}满足5an+1=25·5an,且a2+a4+a6=9,则log13(a5+a7+a9)=()A.-3B.3C.-13D.13解析:选A数列{an}满足5an+1=25·5an,∴an+1=an+2,即an+1-an=2,∴数列{an}是等差数列,公差为2.∵a2+a4+a6=9,∴3a4=9,a4=3.∴a1+3×2=3,解得a1=-3.∴a5+a7+a9=3a7=3×(-3+6×2)=27,则log13(a5+a7+a9)=log1333=-3.故选A.9.(多选)(2021·青岛模拟)设d,Sn分别为等差数列{an}的公差与前n项和,若S10=S20,则下列论断中正确的有()A.当n=15时,Sn取最大值B.当n=30时,Sn=0C.当d0时,a10+a220D.当d0时,|a10||a22|解析:选BC因为S10=S20,所以10a1+10×92d=20a1+20×192d,解得a1=-292d.因为无法确定a1和d的正负性,所以无法确定Sn是否有最大值,故A错误.S30=30a1+30×292d=30×-292d+15×29d=0,故B正确.a10+a22=2a16=2(a1+15d)=2-292d+15d=d0,故C正确.a10=a1+9d=-292d+182d=-112d,a22=a1+21d=-292d+422d=132d,因为d0,所以|a10|=-112d,|a22|=-132d,|a10||a22|,故D错误.10.已知等差数列{an}的公差为-2,前n项和为Sn,a3,a4,a5为某三角形的三边长,且该三角形有一个内角为120°,若Sn≤Sm对任意的n∈N*恒成立,则实数m=()A.7B.6C.5D.4解析:选B∵等差数列{an}的公差为-2,a3,a4,a5为某三角形的三边长,且该三角形有一个内角为120°,∴a23=a24+a25-2a4·a5cos120°,即(a4+2)2=a24+(a4-2)2+2a4(a4-2)×12,化为a24-5a4=0,又a4≠0,解得a4=5,∴a3=7,a5=3,a6=1,a7=-1.∵Sn≤Sm对任意的n∈N*恒成立,∴实数m=6.故选B.11.等差数列{an},{bn}满足:对任意n∈N*,都有anbn=2n+34n-9,则a7b3+b9+a5b4+b8=________.解析:由等差数列的性质可得b3+b9=b4+b8=2b6,a7+a5=2a6.∴a7b3+b9+a5b4+b8=a7+a52b6=2a62b6=a6b6=2×6+34×6-9=1.答案:112.已知数列{an}满足递推关系式an+1=2an+2n-1(n∈N*),且an+λ2n为等差数列,则λ的值是________.解析:因为an+λ2n为等差数列,an+1=2an+2n-1,所以an+1+λ2n+1-an+λ2n=2an+2n-1+λ2n+1-an+λ2n=an2n+12+λ-12n+1-λ2n-an2n=12+λ-12n+1-λ2n是与n无关的常数,则λ-12n+1-λ2n=0,即λ-1-2λ2n+1=0,则λ-1-2λ=0,解得λ=-1.答案:-113.等差数列{an}中,Sn是它的前n项和,且S6S7,S6S8,给出下列结论:①数列{an}的公差d0;②S9S6;③S140;④S7一定是Sn中的最大值.其中正确的是________(填序号).解析:∵S6S7,S6S8,∴S6S6+a7,S6S6+a7+a8.∴a70,a7+a80.∴a70,a80.①数列{an}的公差d0,正确;②由①得a7+a8+a90,∴S6+a7+a8+a9S6,∴S9S6,正确;③S14=14a1+a142=7(a7+a8)0,正确;④显然正确.故正确的是①②③④.答案:①②③④14.已知数列{an}中,a1=2,an=2-1an-1(n≥2,n∈N*),设bn=1an-1(n∈N*).求证:数列{bn}是等差数列.证明:∵an=2-1an-1(n≥2),∴an+1=2-1an.∴bn+1-bn=1an+1-1-1an-1=12-1an-1-1an-1=an-1an-1=1,∴{bn}是首项为b1=12-1=1,公差为1的等差数列.15.已知等差数列的前三项依次为a,4,3a,前n项和为Sn,且Sk=110.(1)求a及k的值;(2)设数列{bn}的通项公式bn=Snn,证明:数列{bn}是等差数列,并求其前n项和Tn.解:(1)设该等差数列为{an},则a1=a,a2=4,a3=3a,由已知有a+3a=8,得a1=a=2,公差d=4-2=2,所以Sk=ka1+kk-12·d=2k+kk-12×2=k2+k,由Sk=110,得k2+