【新高考复习】课时跟踪检测(五十五) 随机事件的概率、古典概型 作业

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

课时跟踪检测(五十五)随机事件的概率、古典概型一、基础练——练手感熟练度1.在下列六个事件中,随机事件的个数为()①如果a,b都是实数,那么a+b=b+a;②从分别标有数字1,2,3,4,5,6,7,8,9,10的10张号签中任取一张,得到4号签;③没有水分,种子发芽;④某电话总机在60秒内接到至少10次呼叫;⑤在标准大气压下,水的温度达到50℃时沸腾;⑥同性电荷,相互排斥.A.2B.3C.4D.5解析:选A①⑥是必然事件;③⑤是不可能事件;②④是随机事件.故选A.2.从某班学生中任意找出一人,如果该同学的身高小于160cm的概率为0.3,该同学的身高在[160,175](单位:cm)内的概率为0.5,那么该同学的身高超过175cm的概率为()A.0.2B.0.3C.0.7D.0.8解析:选A由题意得,身高超过175cm的概率为P=1-0.3-0.5=0.2,故选A.3.某单位安排甲去参加周一至周五的公益活动,需要从周一至周五选择三天参加活动,那么甲连续三天参加活动的概率为()A.310B.320C.25D.12解析:选A由题意,某单位安排甲去参加周一至周五的公益活动,需要从周一至周五选择三天参加活动,共有10种不同的安排方式,其中甲连续三天参加活动的有:(周一、二、三),(周二、三、四),(周三、四、五),共有3种不同的方式,所以甲连续三天参加活动的概率为P=310,故选A.4.(多选)从1~20这20个整数中随机选择一个数,设事件A表示选到的数能被2整除,事件B表示选到的数能被3整除,则对下列事件概率描述正确的是()A.P(A)=12B.P(A∩B)=320C.P(A∪B)=920D.P(A∩B)=720解析:选ABD依题意得样本空间的样本点,总数为20,事件A的样本点包括2,4,6,8,10,12,14,16,18,20,共10个,所以P(A)=1020=12,故A正确;事件A∩B表示的是这个数既能被2整除也能被3整除,其样本点包括6,12,18,共3个,所以P(A∩B)=320,故B正确;事件A∪B表示的是这个数能被2整除或能被3整除,其样本点包括2,3,4,6,8,9,10,12,14,15,16,18,20,共13个,所以P(A∪B)=1320,故C错误;事件A∩B表示的是这个数既不能被2整除也不能被3整除,其样本点包括1,5,7,11,13,17,19,共7个,故P(A∩B)=720,故D正确,故选A、B、D.5.公元五世纪,数学家祖冲之估计圆周率的值的范围是3.1415926π3.1415927.为纪念祖冲之在圆周率上的成就,把3.1415926称为“祖率”,这是中国数学的伟大成就.某小学教师为帮助同学们了解“祖率”,让同学们从小数点后的7位数字1,4,1,5,9,2,6中随机选取2位数字,整数部分3不变,那么得到的数大于3.14的概率为()A.2831B.1921C.2231D.1721解析:选A选择数字的总的方法有5×6+1=31(种),其中得到的数不大于3.14的数为3.11,3.12,3.14,所以得到的数大于3.14的概率为P=1-331=2831.故选A.二、综合练——练思维敏锐度1.(2020·新高考全国卷Ⅰ)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%解析:选C设事件A为喜欢足球,事件B为喜欢游泳,则由题意可知P(A∪B)=96%,P(A)=60%,P(B)=82%.由P(A∪B)=P(A)+P(B)-P(A∩B),可得P(A∩B)=46%,所以既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是46%.2.(2019·全国卷Ⅰ)我国古代典籍《周易》用“卦”描述万物的变化,每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.516B.1132C.2132D.1116解析:选A在所有重卦中随机取一重卦,其基本事件总数n=26=64,恰有3个阳爻的基本事件数为C36C33=20,所以在所有重卦中随机取一重卦,该重卦恰有3个阳爻的概率P=2064=516.3.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,都是白子的概率为1235.则从中任意取出2粒恰好是同一颜色的概率为()A.17B.1235C.1735D.1解析:选C设“从中取出2粒都是黑子”为事件A,“从中取出2粒都是白子”为事件B,“任意取出2粒恰好是同一色”为事件C,则C=A∪B,且事件A与B互斥.所以P(C)=P(A)+P(B)=17+1235=1735,即任意取出2粒恰好是同一颜色的概率为1735.4.有3个不相识的人某天各自乘同一列火车外出,假设火车有10节车厢,那么至少有2人在同一节车厢的概率为()A.29200B.725C.29144D.718解析:选B因为“3人分别在3节车厢”的概率为P=A31010×10×10=1825,从而由对立事件的概率可得所求概率为P=1-1825=725,故选B.5.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()A.15B.25C.35D.45解析:选C从正方形四个顶点及其中心这5个点中任取2个点,共有C25=10种情况,满足两点间的距离不小于正方形边长的有C24=6种,故所求概率P=610=35.6.如图,《宋人扑枣图轴》是作于宋朝的中国古画,现收藏于中国台北故宫博物院.该作品简介:院角的枣树结实累累,小孩群来攀扯,枝丫不停晃动,粒粒枣子摇落满地,有的牵起衣角,有的捧着盘子拾取,又玩又吃,一片兴高采烈之情跃然于绢素之上.甲、乙、丙、丁四人想根据该图编排一个舞蹈,舞蹈中他们要模仿该图中小孩扑枣的爬、扶、捡、顶四个动作,四人每人模仿一个动作.若他们采用抽签的方式来决定谁模仿哪个动作,则甲不模仿“爬”且乙不模仿“扶”的概率是()A.34B.712C.12D.512解析:选B依题意,基本事件的总数为A44=24,设事件A表示甲不模仿“爬”且乙不模仿“扶”,①若甲模仿“扶”,则A包含1×A33=6个基本事件;②若甲模仿“捡”或“顶”,则A包含2×2×A22=8个基本事件,综上可知A包含6+8=14个基本事件,所以P(A)=1424=712,故选B.7.著名的“3N+1猜想”是指对于每一个正整数n,若n是偶数,则让它变成n2;若n是奇数,则让它变成3n+1.如此循环,最终都会变成1.若数字5,6,7,8,9按照以上猜想进行变换,则变换次数为奇数的概率为()A.15B.25C.35D.45解析:选C依题意知,5→16→8→4→2→1,共进行5次变换;6→3→10→5→…,共进行8次变换;7→22→11→34→17→52→26→13→40→20→10→5→…,共进行16次变换;由以上可知,8变换共需要3次;9→28→14→7→…,共进行19次变换.故变换次数为奇数的概率为35.8.(多选)已知m∈{1,2,3,4},n∈{2,3,6,8},设向量p=(m,n),且a=(3,6),b=(2,-1),则下列结论正确的是()A.满足|p|=13的概率为116B.满足p与a共线的概率为316C.满足p⊥b的概率与p与a共线的概率相同D.满足p·(a+b)=50的概率为116解析:选BC依题意,向量p=(m,n)的所有基本事件如表所示:p=(m,n)23681(1,2)(1,3)(1,6)(1,8)2(2,2)(2,3)(2,6)(2,8)3(3,2)(3,3)(3,6)(3,8)4(4,2)(4,3)(4,6)(4,8)共16个.对于A,由|p|=13,得m2+n2=13,满足事件的基本事件只有(2,3),(3,2),则其概率为P=216=18,故A错误;对于B,由p与a共线,得6m-3n=0,即2m=n,满足事件的基本事件有(1,2),(3,6),(4,8),则其概率为316,故B正确;对于C,由p⊥b,得2m-n=0,所以其概率为316,故C正确;对于D,由p·(a+b)=50,得5(m+n)=50,即m+n=10,满足事件的基本事件有(2,8),(4,6),其概率为P=216=18,故D错误,故选B、C.9.从1,2,3,4中选取两个不同数字组成一个两位数,则这个两位数能被3整除的概率为________.解析:从1,2,3,4中选取两个不同的数字组成的所有两位数为:12,13,14,21,23,24,31,32,34,41,42,43,共计12个基本事件,其中能被3整除的有:12,21,24,42,共有4个基本事件,所以这个两位数能被3整除的概率为P=412=13.答案:1310.(2021·南宁一模)用0与1两个数字随机填入如图所示的5个格子里,每个格子填一个数字,并且从左到右数,不管数到哪个格子,总是1的个数不少于0的个数,则这样填法的概率为______.解析:5个格子用0与1两个数字随机填入共有25=32种不同方法,从左到右数,不管数到哪个格子,总是1的个数不少于0的个数包含的基本事件有:①全是1,有1种方法;②第一个格子是1,另外4个格子有一个0,有4种方法;③第一个格子是1,另外4个格子有2个0,有5种方法,所以共有1+4+5=10种基本方法,那么概率P=1032=516.答案:51611.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.商品顾客人数甲乙丙丁100√×√√217×√×√200√√√×300√×√×85√×××98×√××(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?解:(1)从统计表可以看出,在这1000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001000=0.2.(2)从统计表可以看出,在这1000位顾客中有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001000=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001000=0.6,顾客同时购买甲和丁的概率可以估计为1001000=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.12.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工.根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为:[40,50),[50,60),…,[80,90),[90,100].(1)求频率分布直方图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率.解:(1)因为(0.004+a+0.018+0.022×2+0.028)×10=1,所以a=0.006.(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4.(3)受访职工中评分在[50,60)的有:50×0.006×10=3(人),记为A1,A2,A3;受访职工中评分在[40,50)的有:50×0.004×10=2(人),记为B1,B2.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,分别是{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A2,A3},{A2,B1},{A2,B2},{A3,B1},{A3,

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功